Болты гост 7798, гост 7805, din 931, din 933 класса прочности 6.8

Related Posts via Categories

  • Анкерный болт с гайкой – испытанный вариант крепежа
  • Дюбель-гвоздь – какие крепежные изделия самые качественные?
  • Анкерные болты – особый вид крепежа для сложных конструкций
  • Обозначение болтов по ГОСТ – ориентируемся в мире метизов
  • Как заклепать заклепку – автоматические и ручные методы для разных материалов
  • Изготовление болтов – понятный технологический процесс
  • Игольчатый пружинный шплинт – ушастый крепеж для сферы машиностроения
  • Высокопрочные болты – полная информация о крепежных изделиях
  • Размеры вытяжных заклепок – над чем следует подумать при расчете?
  • Шайба пружинная – соединения никогда не раскрутятся самопроизвольно!

Несущая способность болта:

  1. Расчет болтового соединения произведен в соответствии СП 16.13330.2017
  2. Марка стали соединяемых элементов С245
  3. Число срезов 1, те соединены 2 листа болтами
  4. В таблице показаны несущая способность одного болта в болтовом соединении

Предельная нагрузка на болты М16 и М20

минимальная толщина соединяемых элементов 6мм

Диаметр болта(класс прочности) Несущая способность
Срез болта, т Смятие пластин, т
М16 (5,6) 3,9 3,6
М16 (8,8) 6,2 3,6
М20 (5,6) 6,1 4,6
М20 (8,8) 9,6 4,6

минимальная толщина соединяемых элементов 7мм

Диаметр болта(класс прочности) Несущая способность
Срез болта, т Смятие пластин, т
М16 (5,6) 3,9 4,2
М16 (8,8) 6,2 4,2
М20 (5,6) 6,1 5,4
М20 (8,8) 9,6 5,4

минимальная толщина соединяемых элементов 8мм

Диаметр болта(класс прочности) Несущая способность
Срез болта, т Смятие пластин, т
М16 (5,6) 3,9 4,,8
М16 (8,8) 6,2 4,8
М20 (5,6) 6,1 6,1
М20 (8,8) 9,6 6,1

Предельная нагрузка на болты М8, М10 и М12

минимальная толщина соединяемых элементов 4мм

Диаметр болта(класс прочности) Несущая способность
Срез болта, т Смятие пластин, т
М8 (5,6) 1,0 1,1
М8 (8,8) 1,5 1,1
М10 (5,6) 1,5 1,4
М10 (8,8) 2,4 1,4
М12 (5,6) 2,2 1,7
М12 (8,8) 3,5 1,7

минимальная толщина соединяемых элементов 5мм

Диаметр болта(класс прочности) Несущая способность
Срез болта, т Смятие пластин, т
М8 (5,6) 1,0 1,3
М8 (8,8) 1,5 1,3
М10 (5,6) 1,5 1,7
М10 (8,8) 2,4 1,7
М12 (5,6) 2,2 2,1
М12 (8,8) 3,5 2,1

минимальная толщина соединяемых элементов 6мм

Диаметр болта(класс прочности) Несущая способность
Срез болта, т Смятие пластин, т
М8 (5,6) 1,0 1,6
М8 (8,8) 1,5 1,6
М10 (5,6) 1,5 2,1
М10 (8,8) 2,4 2,1
М12 (5,6) 2,2 2,6
М12 (8,8) 3,5 2,6

Предельная нагрузка на болт (несущая способность) при растяжении болтов на растяжение

Диаметр болта(класс прочности) Допустима нагрузка, т.
М8 (5,6) 0,8
М8 (8,8) 1,5
М10 (5,6) 1,2
М10 (8,8) 2,4
М12 (5,6) 1,8
М12 (8,8) 3,5
М16 (5,6) 3,3
М16 (8,8) 6,6
М20 (5,6) 5,1
М20 (8,8) 10,3

Высокие классы прочности и их расшифровка

Согласно международной классификации резьбовых метизов, к высокопрочным болтам, винтам, шпилькам относятся изделия, имеющие цифровую маркировку классов прочности 8.8, 9.8, 10.9, 12.9, а к сверхпрочным – 14.9. Это важнейшая из характеристик, которая обязательно учитывается в любом проекте. Чем выше эти значения, тем прочнее, выносливее, качественнее и соответственно дороже метиз.

Первая цифра

указывает на предельную нагрузку на растяжение, при которой крепеж разорвется. Эта величина называется пределом прочности на разрыв, определяется как одна сотая от номинального временного сопротивления, выражается в МПа или Н/мм².

Например, для болта 10.9 она равняется: 10 / 0,01 = 1000 МПа (Н/мм²).

Вторая цифра

говорит нам о напряжении, при котором крепеж необратимо деформируется при изгибе, а называется этот параметр – предел текучести. Определяется умножением первой цифры на вторую и на 10.

Например, для того же болта 10.9 он равен: 10х9х10 = 900 МПа (Н/мм²).

При расчете соединения для заданной нагрузки значение предела текучести умножают на коэффициент 1/2 или 1/3 для обеспечения 2-х или 3-кратного прочностного запаса.

Марки сталей и особенности изготовления крепежа высокой прочности

Крепежные изделия классов от 8.8 до 14.9, включая болты для автомобильной промышленности, производятся из конструкционных среднеуглеродистых сталей, легированных упрочняющими добавками. Эксплуатационные свойства крепежа определяются двумя факторами:

Самые популярные марки:

35, 40, 40Х Селект, 38ХА, 30ХГСА, 35ХГСА, 40ХН2МА, 38ХГНМ. Реже используют слаболегированные борсодержащие стали марок 12Г1Р, 20Г2Р, 30-35Г1Р. Стали, легированные бором, обладают благоприятным сочетанием прочностных и пластических свойств, но из-за некоторых технологических трудностей при их выплавке, их внедрение в метизное производство сдерживается.

Исходное сырье поступает на производство в виде стержней или проволоки. Болты формируют методом холодной штамповки под давлением на высадочных автоматах, затем на них наносят резьбу на накатных автоматах. Для придания готовым изделиям высоких прочностных характеристик, эксплуатационной надежности и устранения хрупкости их подвергают термическому упрочнению путем нагревания в закалочной печи и последующему отпуску (охлаждению).

Таблица 1. Марки сталей, рекомендованные для изготовления болтов, винтов, шпилек высоких классов прочности.

Класс прочности 8.8 10.9 12.9
Марка стали Ст.35, Ст.35Х, Ст.38ХА, Ст.40Х, Ст.20Г2Р Ст.35Х, Ст.38ХА, Ст.45Г, Ст.40Г2, СТ.40Х, Ст.40Х Селект Ст.30ХГСА, Ст.35ХГСА Ст.30ХГСА, Ст.35ХГСА, Ст.40ХНМА
Граница прочности , МПа 800…830 1000…1040 1200…1220
Граница текучести , МПа 640…660 900…940 1080…1100
Твердость по Бринеллю , НВ 242…318 304…361 366…414

Эксплуатация высокопрочных болтов (сферы, области и примеры)

Применение высокопрочных болтов часто встречается в таких сферах как строительство, изготовление дорожной техники, приборо- и машиностроение, а также других областях, связанных с производством. Высокий спрос на них обусловлен тем, что такие метизы практически не имеют ограничений по эксплуатации и применяются и в токсичных агрессивных средах, и при низких температурах (до −60С).

Высокопрочные крепежные элементы выдерживают как постоянные нагрузки, так и переменные, с перемещаемым центром тяжести, и даже сильные вибрации. Поэтому с помощью этих метизов строят здания, изготавливают промышленную аппаратуру, тяжелую технику (в том числе и военную) и спецтранспорт узкого назначения (краны, погрузчики и т. п.).

ПРИЛОЖЕНИЕ 1 (справочное). Масса стальных болтов (исполнение 1) с крупным шагом резьбы

ПРИЛОЖЕНИЕ 1 Справочное

Длина болта , мм

Теоретическая масса 1000 шт. болтов, кг , при номинальном диаметре резьбы , мм

6

8

10

12

14

16

18

20

22

24

27

30

36

42

48

8

4,306

8,668

10

4,712

9,394

16,68

12

5,118

10,120

17,82

14

5,524

10,850

18,96

27,89

16

5,930

11,570

20,10

29,48

43,98

18

6,336

12,300

21,23

31,12

46,21

65,54

20

6,742

13,020

22,37

32,76

48,45

68,49

95,81

22

7,204

13,520

23,51

34,40

50,69

71,44

99,52

25

7,871

14,840

25,22

36,86

54,05

75,87

105,10

133,3

28

8,537

16,330

26,92

39,32

57,40

80,29

110,60

140,2

30

8,981

17,120

28,52

40,96

59,64

83,24

114,30

144,8

193,0

32

9,426

17,910

29,43

42,59

61,87

86,19

118,00

149,4

198,6

237,0

35

10,090

19,090

31,28

45,34

65,24

90,62

123,60

156,3

207,0

246,9

340,6

38

10,760

20,280

33,18

48,00

68,59

95,04

129,20

163,2

215,4

256,9

353,3

40

11,200

21,070

34,36

49,78

71,25

97,99

132,90

167,8

221,0

263,5

361,8

474,8

45

12,310

23,040

37,45

54,22

77,30

105,70

142,10

179,4

235,0

280,1

373,0

500,9

50

13,420

25,020

40,53

58,67

83,35

113,60

152,40

190,9

249,0

296,7

404,1

526,9

834,5

55

14,530

26,990

43,62

63,11

89,39

121,50

162,40

203,7

263,1

313,3

425,3

553,0

872,1

1304

60

15,640

28,970

46,70

67,55

95,44

129,40

172,40

216,0

278,9

329,9

446,5

579,0

909,8

1356

65

16,760

30,940

49,79

71,99

101,50

137,30

182,40

228,4

293,8

348,8

467,7

605,1

947,4

1407

2009

70

17,870

32,910

52,87

76,44

107,50

145,20

192,40

240,7

308,8

366,5

491,1

631,1

985,0

1458

2076

75

18,980

34,890

55,96

80,88

113,60

153,10

202,40

253,0

323,7

384,3

513,6

659,7

1023,0

1509

2143

80

20,090

36,860

59,04

85,33

119,60

161,00

212,40

265,0

338,6

402,1

536,1

687,5

1061,0

1561

2211

85

21,200

38,840

62,13

89,77

125,70

168,90

222,40

277,7

353,6

419,8

558,6

715,2

1098,0

1612

2278

90

22,310

40,810

65,21

94,20

131,70

176,80

232,40

290,1

368,5

437,6

581,0

743,0

1141,0

1663

2345

95

42,790

68,30

98,64

137,80

184,70

242,40

302,4

383,4

455,4

603,5

770,8

1181,0

1715

2412

100

44,760

71,38

103,10

143,80

192,60

252,40

314,7

398,3

473,2

626,0

798,5

1221,0

1766

2479

105

74,47

107,50

149,90

200,50

262,40

327,1

413,3

490,9

648,5

826,3

1261,0

1826

2546

110

77,55

112,00

155,90

208,40

272,30

339,4

428,2

508,7

671,0

854,1

1301,0

1880

2614

115

80,63

116,40

162,00

216,30

282,30

351,8

443,1

526,5

693,5

881,8

1341,0

1934

2690

120

83,72

120,90

168,00

224,20

292,30

364,1

458,1

544,2

716,0

909,6

1381,0

1989

2760

125

86,80

125,30

174,00

232,10

302,30

376,4

473,0

562,0

738,5

937,4

1421,0

2043

2831

130

89,89

129,70

180,10

240,00

312,30

388,8

487,9

579,8

761,0

965,2

1461,0

2098

2903

140

96,06

138,60

192,20

255,80

332,30

413,5

517,8

615,3

806,0

1021,0

1541,0

2207

3045

150

102,18

147,50

204,30

271,60

352,30

438,1

547,6

650,8

850,1

1076,0

1621,0

2315

3187

160

108,38

156,40

216,40

287,40

372,30

462,8

577,5

686,4

895,9

1132,0

1701,0

2424

3329

170

114,58

165,30

228,50

303,20

392,30

487,5

607,4

721,9

940,9

1188,0

1780,0

2533

3471

180

120,68

174,20

240,60

319,00

412,30

512,2

637,2

757,5

985,9

1243,0

1860,0

2642

3614

190

126,88

183,10

252,70

333,80

432,30

536,9

667,1

793,0

1031,0

1299,0

1940,0

2751

3756

200

133,08

191,90

264,70

350,60

452,20

561,5

697,0

828,6

1076,0

1354,0

2020,0

2860

3898

220

209,70

228,90

382,20

492,20

610,9

756,7

899,6

1166,0

1465,0

2180,0

3077

4182

240

227,50

313,10

413,80

532,20

660,3

816,4

970,8

1256,0

1576,0

2340,0

3295

4466

260

245,20

337,60

445,40

572,20

709,6

876,1

1042,0

1346,0

1687,0

2500,0

3513

4751

280

361,50

476,90

612,20

759,0

935,9

1113,0

1436,0

1798,0

2660,0

3730

5035

300

385,70

508,50

652,20

808,3

995,6

1184,0

1526,0

1910,0

2820,0

3948

5319

(Измененная редакция, Изм. N 5).

Полное условное обозначение

Полное обозначение болтов, винтов, шпилек и гаек нормируется стандартом ГОСТ 1759.0-87 «Болты, винты, шпильки и гайки. Технические условия»

На постсоветском пространстве согласно ГОСТ 1759.0-87 и ГОСТ 18126-94 принята следующая схема условного обозначения для болтов, винтов и шпилек и гаек из углеродистых сталей и цветных сплавов:

Для шайб используется немного другая схема условного обозначения согласно ГОСТ 18123-82 «Шайбы. Общие технические условия»:

Приведенные схемы имеют общий вид, со всеми возможными элементами. В зависимости от вида крепежа обозначение может содержать большее или меньшее количество элементов. Также необходимо отметить, что некоторые виды болтов, шпилек, гаек и шайб имеют свои специфические условные обозначения, нормируемые конкретным стандартом (например: болты фундаментные ГОСТ 24379.1-80, шпильки для фланцевых соединений ГОСТ 9066-75 и др.)

Это интересно: Стопорное кольцо — виды, ГОСТ, устройство, инструмент для монтажа

Гайки, шайбы и гроверы

Эти три метиза можно отнести в один раздел, так как они относятся к категории фиксирующих, и не работают как отдельный крепеж. Начнем с самого простого элемента – шайбы. Это круглое изделие, наживляемое на болт и устанавливаемое под гайку. Шайба препятствует раскручиванию гайки и в ряде случаев перекрывает пустое пространство, если отверстие, в которое вставлен болт, больше, чем диаметр самого болта. Шайбы, несмотря на свою простоту, могут отличаться по материалу, из которого они изготовлены. Наиболее привычные гайки изготавливаются из металла, но существуют также резиновые и пластиковые элементы. Они используются при креплении изделий, требующих бережного отношения к поверхности. Например, крашеный профнастил закручивается через резиновую шайбу. Она обеспечивает плотное соединение, но в отличие от металла не способна нанести вред крашеному покрытию.

Гровер – одна из разновидностей крепежной шайбы. Это металлическое кольцо, распиленное с одной стороны и изогнутое по спирали. При стягивании гайкой кольцо принимает изначальную форму, тем самым создавая напряжение, то есть, обеспечивая лучший прижим. Гроверы изготавливаются из более прочной марки стали, и после раскручивания они снова изгибаются, что позволяет использовать их многократно. Назначение гровера – препятствование раскручиванию, то есть то же, что у обычной шайбы. Но гровер, благодаря своей форме, может работать под сильной нагрузкой и обеспечивает надежное соединение при вибрации. Гроверы используются в машиностроении и на различных станках, то есть везде, где присутствует вибрация. Если закрутить гайку без гровера, она просто раскрутится со временем.

Гайки – самый разнообразный метиз в данной категории. Они служат для фиксации резьбового крепежа, то есть накручиваются на болт или винт. Помимо размера и шага резьбы, гайки отличаются формой, и список конфигураций довольно большой:

  • Прямые гайки с шестигранной формой. Наиболее распространенный тип метиза, встречающийся чаще всего.
  • Корончатая. Имеет пазы на верхней части, в которые после закручивания вставляется специальный шплинт, препятствующий раскручиванию.
  • Барашек. Гайка со специальными выступами, позволяющими закручивать ее без использования ключа. Используется для крепления объектов, не испытывающих серьезные нагрузки и с минимальной вибрацией.
  • Квадратная. Специальная гайка, погружаемая в специальный паз. Ее не нужно удерживать ключом при закручивании, так как она уже зафиксирована в посадочном отверстии.
  • Фланцевая. На нижней части гайка имеет юбку с насечками. При закручивании обеспечивает более надежное сцепление с шайбой или гровером.

Это далеко не полный список форм-факторов гаек, и многие производители современного оборудования используют собственные конструкции, как это происходит с формой винтов и шурупов.

Маркировка болтов и гаек – полная расшифровка всех обозначений

Болт как изделие для крепежа – цилиндрический стержень, имеющий резьбу и головку. По форме она бывает разной – квадратная, шестигранная и более сложных конфигураций. Но принцип нанесения маркировки болтов – общий. Как ее расшифровать и применить на практике — об этом и поговорим в данной статье.

Маркировка крепежа производится в соответствии с ГОСТ №№ 1759.0 от 1987 года, 18126 от 1994 года. Однако литеры на отдельные разновидности болтов наносятся и по другим стандартам. Например, для образцов фундаментных применяется ГОСТ № 24379.1 от 1980 года.

Полная

Пояснения
  • Существует 3 класса точности крепежных деталей. Для болтов и гаек данный параметр не указывается (позиция 2), так как все они, согласно стандарту, относятся к категории B.
  • Вариантов исполнений бывает 4. Если болт первого, то цифра «1» не проставляется.
  • Существующие виды резьбы: Тр – трапецеидальная, К – коническая, М – метрическая. Ее диаметр и шаг – в «мм». Если она традиционная (правая), то это подразумевается. При левой резьбе ставится символ LH (позиция 6).
  • Толщина покрытия (на позиции 12) выражается в «мкм».

При сокращенной маркировке указываются только наиболее существенные параметры. При упрощенной указываются главные характеристики — как правило, длина и сечение. Например, 16 х 25.

Что наносится на головку болта

  1. Стрелка. В случае если резьба – левая. Для правой, традиционной, маркировка не предусмотрена.
  1. Класс прочности металла (сплава). Варианты расположения знаков показаны в таблице.

По видам стали

Углеродистые, например – 8.8.

  • 1 – показывает предельную нагрузку места соединения (т/см2).
  • 2 (через точку) – отношение пределов (текучести/прочности) х 10.

Мартенситные (с минимальным содержанием углерода). Аналогично. Чтобы отличить от углеродистых, обозначение подчеркивается. Например, 8.8. На некоторых образцах точка между цифрами может не ставиться.

«Оцинковка»

  • А2 – марка сплава.
  • 70 – предел прочности.

ismith.ru

3 Механические свойства элементов и расшифровка их маркировки

Временное сопротивление – это отношение нагрузки, которую может выдержать болт без разрушения, к его поперечному первоначальному сечению. Данная величина варьируется в пределах 30–160 кгс/кв. мм (минимальное значение) и 49–208 (теоретически возможный максимум). Под ударной вязкостью подразумевают определенный цикл воздействия на образец болта в форме призмы (его делают с вырезкой на одной стороне), после которого метиз разрушается. Иногда испытания останавливают в случаях, когда крепежный элемент начинает деформироваться. Величина вязкости равняется 3–6 кгс*м/кв. см

Обратите внимание! Для некоторых классов прочности (3.6, 5.8, 6.8) показатель ударной вязкости в ГОСТ не регламентируется

Маркировка болтов

Минимальная нагрузка, которая вызывает деформацию метизов без ощутимого повышения растягивающего напряжения, называется пределом текучести. Для болтов 3.6 он равняется 20 кгс/кв. мм, для изделий 12.9 – 108. Текучесть устанавливается на спец. образцах по стандартной методике (воздействие на изделие до момента его деформирования). Величина относительного удлинения определяется как отношение повышения длины болта после его разрушения к первоначальной протяженности изделия. Важный момент. Минимальное относительное удлинение отмечается у болтов прочностью 12.9 (8 %), максимальное – у метизов 3.6 (25 %). Твердость крепежных элементов по шкале HRB составляет 48–86 единиц, по Бринеллю – 90–330 НВ.

Теперь, зная все о механических характеристиках болтов, можно разбираться с принципом их маркировки. Здесь все достаточно просто. Обозначение класса прочности – это две цифры, разделенные точкой. Достаточно умножить на 10 первое число, чтобы получить значение временного минимального сопротивления болта. Аналогичным образом поступаем со второй цифрой. Умножаем ее на 10 и узнаем соотношение (в процентах) текучести изделия к его сопротивлению. Например, для метизов класса 8.8 это отношение будет равняться 80 % (8*10). Маркировку наносят на торце головки крепежа выпуклыми цифрами.

Другие виды болтов

Учитывая то, что такой вид крепежа часто используется в различных сферах жизнедеятельности, диапазон его использования невероятно обширный. Их используют в промышленном производстве, машиностроении, приборостроении, при сборке мебели и различных конструкций в домашних условиях. Виды болтов соответственно, различают по назначению:

  • Для машиностроения – болты повышенной прочности, с шестигранной головкой и метрической резьбой. Применяются в процессе сборки тяжелых конструкций. Используются для сборки промышленного оборудования и механизмов из чугуна или стали.
  • Для строительства – высокопрочные детали с увеличенными головками. Часто используются при строительстве массивных объектов – метрополитенов, тоннелей, мостов, гражданских и промышленных зданий.
  • Для дорожного строительства – могут быть разного класса прочности – это зависит от места использования. Чаще детали оснащаются полукруглой головкой и подголовком в форме квадрата. Такая конструкция позволяет монтировать их без специального оборудования. Используются для сборки металлических заграждений. Чаще оснащаются оцинкованным покрытием, что продляет срок их службы.
  • Для строительства железных дорог – бывают стыковые, клеммные и закладные. Первые используют с рельсовыми накладками и выпускаются с круглой головкой. Вторые соединяют шпалы с подкладкой. Третьи – крепят подкладку к рельсам. Все они изготавливаются из углеродистой стали в небольшом количестве, поскольку сфера их применения очень узкая.
  • Для транспорта (элеваторные или норийные) – используются в процессе прикрепления подающего элемента (ковша) к ленте транспортировки. Материал изготовления – углеродистая сталь. Ее могут покрывать оцинковкой, а могут использовать в чистом виде. Головка таких изделий плоская, а от стержня – полукруглая. Для прочного закрепления, полукруг головки оснащается шипами – это предотвращает их поворот в процессе эксплуатации.
  • Для сельскохозяйственных целей (лемешные) – предназначены для крепежа навесного оборудования. Вид конструкции – с потайной головкой, класс точности – до С. Бывают с квадратным подголовком, что предотвращает поворот изделия.
  • Для сборки мебели – полукруглые. Такие детали дешевле других. Их часто применяют для сборки различных деревянных конструкций – каркасных домов, стропил и других неответственных соединениях. Уровень прочности – средний. Тип покрытия – оцинковка.

Классы прочности болтов и маркировка – таблица

Класс прочности болта – технико-эксплуатационная характеристика, которая отражает предельную нагрузку на металлоизделие при скреплении деталей, показывает устойчивость к деформациям, ударам и разрыву.


Классы прочности отражают предельную нагрузку при скреплении деталей.

По ГОСТу 1759.4-87 (ISO 898.1-78) метизы подразделяются на 11 групп: 3.6; 4.6; 4,8; 5.6; 5.8; 6.6; 6.8; 8.8; 9.8; 10.9; 12.9.

Чем выше значение, тем большее усилие способен выдержать крепеж, тем он прочнее и выносливее.

Механические свойства крепежей в зависимости от показателя прочности представлены ниже в таблице:

Класс прочности Номинальное временное сопротивление, Н/мм² Твердость по Виккерсу (min/max), HV Предел текучести (min/max), МПа
3.6 300 95/250 180/190
4.6 400 120/250 240
4.8 400 130/250 320/340
5.6 500 155/250 300
5.8 500 160/250 400/420
6.6 600 190/250 360/480
6.8 600 190/250 640
8.8 800 250/335 640/660
9.8 900 290/360 720
10.9 1000 320/380 900/940
12.9 1200 385/435 1080/1100

Что наносится на шапку болта

На стандартном болте, сделанном по ГОСТ 7798-70, есть маркировка.

В нее входят:

  1. Класс прочности. Определяет степень нагрузки и сферу применения.
  2. Клеймо завода-изготовителя. Позволяет идентифицировать компанию, занимающуюся производством метизов.
  3. Стрелка. Указывает на левостороннюю резьбу.


Стандартное расположение маркировки на болтах

Обозначения наносят на верхнюю часть головки. Они бывают выпуклыми и углубленными. Геометрию определяет производитель.

На болтах и винтах диаметром более 6 мм маркировка обязательна. На крепежах меньших размеров номер не ставят.


На стандартном болте есть маркировка с классом прочности.

На деталях малого размера или нестандартной формы применяют символы из циферблатной системы.

Расшифровка знаков на болтах из нержавеющего металла:

  1. Обозначение марки аустенитной стали:
    • А2 – устойчивость к воздействию воды;
    • А4 – стойкость к солям, щелочам, кислотам.
  2. Граница прочности – 50, 60, 80, что соответствует 500, 600, 800 МПа и классам 5.6(8), 6.6(8), 8.8.

Возможно заводское клеймо.

Изделия из мартенситного сплава маркируют аналогично углеродистым, при этом цифры внизу подчеркнуты. Стандартом разрешено не ставить точку в обозначении.

В БВП знаки указывают согласно ГОСТ 52644-2006.

В качестве примера: D 11.14 8.8 S ХЛ, где:

  • D – идентификатор производителя;
  • 11.14 – номер плавки;
  • 8.8 – граница прочности;
  • S – болт с 6-гранной увеличенной шляпкой;
  • «ХЛ» – климатическое исполнение (холодный регион).


Изделия из мартенситного сплава имеют заводское клеймо.

Условные обозначения на шпильки наносят, если диаметр резьбы превышает 12 мм.

Требования по ГОСТу

Метизы должны соответствовать прописанным в ГОСТах размерам, механическим свойствам, классу точности, нормам качества, не иметь крупных дефектов и следов коррозии.

На чертежах и в спецификациях инженеры отмечают болты строго по стандарту.

8.2 Испытание на растяжение полноразмерных болтов, винтов и шпилек

Испытаниенарастяжениеполноразмерныхболтовследуетпроводитьаналогичноиспытаниямна растяжениеобработанныхобразцов(см. ). Этоиспытаниепроводятсцельюопределенияпредела
прочностинарастяжение. ВычислениепределапрочностинарастяжениеRmосновываетсянаноминальнойплощадирасчетногосеченияAs,nom

гдеd2-номинальныйсреднийдиаметрнаружнойрезьбы (см. ГОСТ 24705);

d3-внутреннийдиаметрнаружнойрезьбы, вычисленныйпоформуле

гдеd1-номинальныйвнутреннийдиаметрнаружнойрезьбы (см. ГОСТ 24705);

Н-высотаисходноготреугольникарезьбы (см. ГОСТ 9150).

Виспытанияхполноразмерныхболтов, винтовишпилекиспользуютнагрузки, приведенныевтаблицах-.

Припроведениииспытаниярастягивающаянагрузкадолжнабытьприложенаксвободномурезьбовомуучасткудлинойнеменее 1 d. Испытаниесчитаютудовлетворительным, еслиразрывпроисходит встержнеиливсвободномрезьбовомучасткеболта, аневместесоединенияголовкисостержнем.

Испытательнаяскорость, определяемаяскоростьюползунасосвободнымходом, недолжнапревышать 25 мммин. Захватыразрывноймашиныдолжныбытьсамоцентрирующиесядляисключенияизгибаиспытательногообразца.

Шлицевые соединения

Шлицевое соединение представляет собой фактически многошпоночное соединение, у которого шпонки выполнены за одно целое с валом.

Назначение шлицевых соединений — передача вращающего момента между валом и ступицей.

Шлицевые соединения стандартизованы и широко распространены в машиностроении.

Достоинства шлицевых соединений по сравнению со шпоночными:

  1. Способность точно центрировать соединяемые детали или точно выдерживать направление при их относительном осевом перемещении.
  2. Меньшее число деталей соединения; шлицевое соединение образуют две детали, шпоночное — три.
  3. Большая несущая способность вследствие большей суммарной площади контакта.
  4. Взаимозаменяемость (нет необходимости в ручной пригонке).
  5. Большее сопротивление усталости вала вследствие меньшей глубины впадины и меньшей концентрации напряжений, особенно для эвольвентных шлицев.

Недостатки — более сложная технология изготовления, а, следовательно, и более высокая стоимость.

Шлицевые соединения различают:

  1. по характеру соединения: неподвижные для закрепления детали на валу, подвижные, допускающие перемещение вдоль вала (например, блока шестерен коробки передач, шпинделя сверлильного станка);
  2. по форме выступов: прямобочные, эвольвентные, треугольные.

Соединения с прямобочным профилем (рис. 1; 2). Применяют в неподвижных и подвижных соединениях. Они имеют постоянную толщину выступов.

Стандарт предусматривает три серии соединений с прямобочным профилем: легкую, среднюю и тяжелую, которые различаются высотой и числом Z выступов.

Тяжелая серия имеет более высокие выступы с большим их числом. Центрирование (обеспечение совпадения геометрических осей) соединяемых деталей выполняют по наружному D, внутреннему d диаметрам или по боковым поверхностям b выступов.

Выбор способа центрирования зависит от требований к точности центрирования, твердости ступицы и вала.

Первые два способа обеспечивают наиболее точное центрирование. Зазор в контакте поверхностей: центрирующих — практически отсутствует, не центрирующих — значительный. Центрирование по D или d (рис. 2 а) применяют в соединениях, требующих высокой соосности вала и ступицы.

Центрирование по боковым поверхностям b (рис. 2, в). В сопряжении деталей по боковым поверхностям зазор практически отсутствует, а по диаметрам D и d имеет место явный зазор. Это снижает точность центрирования, но обеспечивает наиболее равномерное распределение нагрузки между выступами.

Поэтому центрирование по боковым поверхностям b применяют для передачи значительных и переменных по значению или направлению вращающих моментов, при жестких требованиях к мертвому ходу и при отсутствии высоких требований к точности центрирования: например, шлицевое соединение карданного вала автомобиля.

Соединения с эвольвентным профилем (рис. 3). Применяют в неподвижных и подвижных соединениях. Боковая поверхность выступа очерчена по эвольвенте (как профиль зубьев зубчатых колес). Эвольвентная протяжка профиля отличается от прямобочного повышенной прочностью в связи с утолщением выступа к основанию и плавным переходом в основании.

При изготовлении выступов применяют хорошо отлаженную технологию изготовления зубьев зубчатых колес. Соединения обеспечивают высокую точность центрирования; они стандартизованы — за номинальный диаметр соединения принят наружный диаметр D. От зубьев зубчатых колес их отличает больший угол зацепления (здесь 30°) и меньшая высота зуба. Выступ (h=m), что связано с отсутствием перекатывания.

По сравнению с прямобочным соединение с эвольвентным профилем характеризует большая нагрузочная способность вследствие большей площади контакта, большого количества зубьев и их повышенной прочности. Применяют для передачи больших вращающих моментов. Его считают перспективными.

Соединения с треугольным профилем (рис. 4) изготовляют по отраслевым нормалям. Применяют в неподвижных соединениях. Имеют большое число мелких выступов-зубьев (z = 15…70; m = 0,5… 1,5). Угол профиля зуба ступицы составляет 30, 36 или 45°. Применяют центрирование только по боковым поверхностям, точность центрирования невысокая.

Параметры соединения записывают через модуль m: m=mz; h=1,3m. Применяют для передачи небольших вращающих моментов тонкостенными ступицами, пустотелыми валами, а также в соединениях стальных валов со ступицами из легких сплавов, в приводах управления (например, привод стеклоочистителя автомобиля).

Источник

В чем отличие высокопрочного крепежа от обычного?

Главное отличие от метизов общего назначения заключается в особых физико-механических свойствах высокопрочного крепежа, которые дают ему возможность воспринимать более тяжелую нагрузку. К примеру, болт высокого класса прочности 12.9 разорвется при нагрузке 1200 Н/мм², а аналогичный по диаметру низкого класса 4.8 – при 420 Н/мм², то есть при нагрузке в 2.7 раза меньшей.


Высокопрочный винт ISO 7380-1 класса прочности 10.9

Помимо колоссальной стойкости к повышенным нагрузкам, крепеж высокого класса прочности дает еще целый ряд преимуществ:

  • Снижение металлоемкости изделий и конструкций, при одновременном сохранении надежности крепежных узлов. Это достигается путем использования меньших по размеру винтов, но рассчитанных на более высокие нагрузки.
  • Использование шпилек меньшего диаметра влечет за собой уменьшение диаметра монтажных отверстий и, как следствие, повышение прочности металлоконструкций, фланцевых соединений. Кроме того, замена обычных метизов на более прочные позволяет сократить количество точек крепления, снизив тем самым затраты на крепеж.
  • Возможность применения в различных климатических условиях. Высокопрочные болты северного исполнения могут эксплуатироваться в условиях сурового климата до -60°С (маркировка «ХЛ») или средних холодных температур до -40°С (маркировка «У»).
  • Способность воспринимать постоянные, переменные и особые нагрузки (подвижные, вибрационные, динамические, сейсмические).
  • Возможность применения в конструкциях, эксплуатируемых в слабо-, средне-, сильноагрессивных средах с использованием защитных металлических или лакокрасочных покрытий.
  • Создание сдвигоустойчивых соединений. В обычном болтовом соединении при нагрузке на сдвиг происходит смещение соединяемых элементов, равное величине зазора между шпилькой и стенкой отверстия. Высокопрочный болткомплект позволяет стянуть элементы с большим усилием, благодаря чему между ними возникает трение, исключающее сдвиг. Такое соединение называется фрикционным.

Преимущества перед сварочным соединением:

  • Соединения на болтах снижают трудоемкость монтажа, позволяют вести сборку силами рабочих невысокой квалификации, автоматизировать, механизировать сборочный процесс.
  • Применение высокопрочных болтовых соединений при монтаже металлоконструкций позволяет использовать элементы из трудносвариваемых сталей повышенной прочности.
  • Возможность визуального контроля целостности монтажного соединения на болтах, тогда как в сварных швах могут быть скрытые дефекты.

Преимущества перед заклепочным соединением:

Сегодня при возведении металлоконструкций на смену заклепкам пришли высокопрочные болткомплекты, которые более выносливы переменным нагрузкам за счет равномерного распределения напряжения по сечению болтового соединения. К тому же в отличие от заклепок они могут быть легко заменены в случае износа, дают возможность сборки/разборки конструкции, могут использоваться многократно, что облегчают ремонт оборудования.

КОНТРОЛЬ МЕХАНИЧЕСКИХ СВОЙСТВ

В табл. 5 приведены две программы
испытаний А и В для контроля механических свойств болтов, винтов и шпилек с
использованием методов испытаний, приведенных в разд. 6.

Программа В является
предпочтительной для всех изделии и обязательной для изделий с разрывной
нагрузкой менее 500 кН.

Программа А применяется для
испытания образцов, полученных механической обработкой, и изделий, площадь
сечения стержня которых меньше номинальной площади сечения резьбового участка.

В табл. 4 приведен ключ к
программам испытаний (см. табл.5).

Таблица 4

Размеры

Болты, винты и шпильки с диаметром резьбы d£4 мм
или длиной l<2.5
d*

Болты, винты и шпильки с диаметром резьбы d>4 мм и длиной l³2,5d

Испытание,
определяющее приемку

Применение

Активное развитие вопроса высокопрочного крепежа пришлось на середину XX века. Именно в этот период инженеры ФРГ, Великобритании и США стали массово использовать болтовые соединения взамен заклепочных при сборке металлоконструкций.

Переход на высокопрочные болты в промышленном и гражданском строительстве после 60х годов стал уже массовым. С помощью такого решения возводили мосты, защитные и опорные сооружения, укрепления горных разработок, высотные и заводские здания, в том числе — комплекс атомного центра в Огайо.

Стяжку на болтах применяют для изделий, испытывающих постоянные динамические и сдвиговые нагрузки. Из наиболее показательных частных случаев — железнодорожные мосты и тяжелое крановое оборудование.

Основные преимущества перед заклепками:

  • выше нагрузочная способность — 22 закаленных болта М22 из легированной стали успешно заменили 32 заклепки диаметром 23 мм из стали Ст2;
  • после затяжки отсутствуют щели между стыками стянутых поверхностей;
  • суммарное снижение веса конструкции (вплоть до 25%);
  • процесс сборки быстрее в 2..3 раза;
  • нет необходимости в дополнительном оборудовании для нагрева соединений (при горячей клепке);
  • для монтажа не нужны высококвалифицированные рабочие;
  • переход на разъемные соединения упростил изготовление, сборку, обслуживание и ремонт конструкций в целом.

Существенным недостатком болтов оставались лишь жесткие требования к качеству продукции: в случае, если термическая обработка изделий была некачественной или нужный уровень прочности не был достигнут, при затяжке наблюдали мгновенный срез резьбы и возникновение трещин.

На надежность соединения болтами оказывают непосредственное влияние силы трения, возникающие в зоне соприкосновения головки болта или торца гайки с шайбой или поверхностью металлоконструкции. Чтобы искусственно повысить коэффициент трения контакта, строители-монтажники используют пескоструйную и огневую зачистку.

Предварительное натяжение болтов может изменяться, если конструкция испытывает значительный перепад температур. Так для стальных узлов работа в диапазоне от −40 до +40°С может повлечь за собой уменьшение затяжки на 4%, а для алюминиевых — вплоть до 14%.

Кроме строительной сферы преимущества высокопрочного крепежа нашли применение при сборке тяжелонагруженного ответственного оборудования атомных электростанций. Там предпочтение отдают в большей мере шпилечным соединениям. Они лучше проявляют себя при работе на фланцах под влиянием повышенных температур.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: