Токарные автоматы продольного точения: особенности конструкции и их применение

Классификация и основные параметры

Для универсальных токарных станков есть два основных параметра, которые определяют область применения и основные возможности:

  1. Наибольший диметр обрабатываемой детали — определяется высотой от оси вращения шпинделя до наивысшей точки станины. Это расстояние умножается на 2 и определяет максимальный диаметр заготовки, которую возможно закрепить в шпинделе.
  2. Расстояние между крайними точками передней и задней бабок — определяет максимальную длину обрабатываемой детали.

Существует множество дополнительных параметров, которые также важны для универсальных токарных станков:

  • максимальная и минимальная скорости вращения шпинделя и шаг градации;
  • цена деления шкалы ручной и автоматической подачи;
  • количество одновременно закрепляемых резцов в каретке;
  • потребляемая мощность;
  • габаритные размеры.

Универсальные станки классифицируются по следующим основным признакам.

1. По способу управления:

  • с ручным управлением;
  • с числовым программным управлением (ЧПУ).

2. По углу расположения оси вращения заготовки:

  • горизонтальные;
  • вертикальные;
  • расположенные под углом.

3. По типу привода основных узлов и механизмов:

  • с механическим приводом;
  • с гидравлическим приводом;
  • с комбинированным приводом.

Сегодня в особую категорию выделены современные универсальные токарные станки с ЧПУ. Здесь уже часто опускают в названии слово «токарные», так как эти станки обладают возможностью полноценного сверления, фрезерования, долбления и др. В то время как по устаревшей общепринятой классификации для каждой из этих операций предназначен отдельный станок. И допускались лишь простейшие операции, отличные от основного назначения, например, сверление или зенкерования осевого отверстия.

До сих пор можно встретить в названии универсального станка с ЧПУ, который способен производить полную обработку детали за один установ с применением сложных фрезерных и сверлильных операций, приставку «токарный». Но это уже не является абсолютно правильным, так как подобные станки полноценно могут выполнять другие металлорежущие операции, которые часто занимают лидирующее место в технологии обработки какой-либо детали.

22.11.2018

Классификация станков по возможному материалу обработки

Все производственные станки разделяются по своим техническим характеристикам, исходя из материала заготовок, которые они будут обрабатывать. Так, металл и древесина считаются основными материалами, с которыми работает станочное оборудование. Для работы с деревянными заготовками подходят станки с более слабыми показателями мощностями. Но, с другой стороны, деревообрабатывающие станки должны обеспечиваться более гибкими настройками по операциям. Что касается станков для металлообработки, то они требуют более высокой мощности и надежной элементной базы. Наиболее популярными считаются токарные, фрезерные и сверлильные станки.

Какие операции по металлу можно выполнять

Благодаря тому, что человеческий фактор был сведён к минимуму, операции по металлу стали значительно легче и приносят меньше брака. Получается так из-за программы, которая заложена в компьютер.

Она является таким своеобразным шаблоном, по которому компьютер понимает — готова деталь или нет. В этом разделе будет рассказано об операциях, которые может выполнять по металлу станок с ЧПУ.

Внешнее и внутреннее вытачивание деталей

Здесь всё просто, по крайней мере, для машины. Установленная заготовка, которая в будущем станет деталью, закрепляется на станке. Она может быть закреплена вручную или, если установлено соответствующее оборудование автоматически (чаще всего применяют именно автоматический вариант).

После начинается внешнее обтачивание детали при помощи либо лазера, либо лезвия, которое установлено на станок. Постепенно срезая лишнее, заготовка приобретает форму нужной детали. Так делается внешнее обтачивание деталей на станке с ЧПУ.

С внутренним всё примерно также, только с изменениями. После установки заготовки станок начинает сверлить, или как это называют по-другому, рассверливать отверстие у основания заготовки.

После того, как отверстие будет готов, компьютер сравнит его с шаблоном, который прописан в заданной программе. Если найдутся огрехи, он проанализирует — можно ли это исправить (как правило, да, ведь машины редко ошибаются). После заготовка шлифуется и деталь готова.

Продольная обработка заготовки

Продольная обработка — это метод, который применяют для изготовления полос, штрипсе, лент. В зависимости от программы, которая установлена в компьютер.

Такие работы на станке с ЧПУ выполняются преимущественно при помощи лазера, так как это позволяет избавиться от брака и ускоряет процесс работы. После установки заготовки, числовое программное управление на станке будет его обрабатывать в соответствии с заданным алгоритмом действий. Лазерный портал приводится в действие шаговыми двигателями, на котором он закреплён.

Черновая и чистовая обработка

Для начала что это вообще, такое. Черновая обработка металла состоит из подгона детали под нужный размер при помощи снятия слоёв металла.

Обычно в станке с ЧПУ эту роль выполняет компьютер после того, как деталь уже вырезана. Чистовая обработка идёт потом и представляет собой полировку поверхности изделия. Всё это станок выполняет по заданным алгоритмам.

Регулировка длины деталей

В программе, которую дают компьютеру, чётко прописаны размеры детали. Заготовки также дают подходящего размера. Перед тем, как вставить деталь, станок регулирует и настраивает сам себя для изготовления.

После этого он начинает выполнять работу, после чего сравнивает размер с теми, что были даны человеком. Если отклонений нет — деталь готова. Если есть — станок с ЧПУ начинает обтачивать деталь, снимая слои металла и регулируя длину.

Вытачивание пазов, выемок и отверстий

Пазы и выемки — это отверстия, которые делают на детали. Такие отверстия могут служить либо для того, чтобы в них могла войти другая деталь, либо для установки к какому-либо устройству. Станок с ЧПУ вытачивает такие отверстия при помощи лазера, делая при этом высокоточные разрезы.

Они могут быть прямоугольными, Т-образными, типа «ласточкин хвост», фасонными, сквозными, открытыми, закрытыми и другими. То, какой формы будет отверстие, зависит от детали и программы, которую человек установил в числовое программное управление.

Нарезание резьбы дюймового и метрического типа

Этот тип резьбы видели практически все. Она используется в основном для того, чтобы одна деталь могла прикручиваться к другой. Главными параметрами при изготовлении такой резьбы являются шаг и величина. Под шагом в данном случае имеется в виду:

  • наружный диаметр, измеряемый между верхними точками резьбовых гребней, находящихся на противоположных сторонах трубы;
  • внутренний диаметр как величину, характеризующую расстояние от одной самой нижней точки впадины между резьбовыми гребнями до другой, также находящихся на противоположных сторонах трубы.

Все параметры нужно вбить в компьютер станка, после чего он сам вырежет отличную и ровную резьбу при помощи лазера.

Справка! В любом случае параметры для изготовления резьбы на изделии вносятся человеком в компьютер станка, а тот, действуя согласно алгоритму, при помощи лазера делает превосходную резьбу.

Общая классификация

Классификация металлорежущих станков осуществляется по разным факторам. Это разделения по весу, габаритам, типу, классу точности, степени автоматизации, универсальности. О каждой их групп нужно поговорить более подробно.

Классификация по типам

По типу оборудования выделяется 9 видов установок:

  1. Токарные станки. Занимают примерно 30% от общей массы металлорежущих устройств. Заготовка зажимается в специальном зажиме. Процесс разрезания начинается после установки резцов, которые снимают слой металла под воздействием вращения.
  2. Расточный, сверлильные агрегаты. Занимают 20% от общей массы станков. Детали закрепляются на рабочем столе. Резание происходит за счет вращения шпинделя с со сверлом, зажатым в патроне.
  3. Заточные, шлифовальные, полировальные машины. Занимают 20% от общей массы установок по резанию металлов. Резание металла происходит за счет вращения абразивного материала, которые соприкасается с рабочей поверхностью. От величины абразива зависит скорость обработки.
  4. Устройства для физико-химического резания заготовок. Наименее распространенное оборудование.
  5. Аппараты для обработки резьбы, зубцов. Занимают 6% от массы. Используются для нарезания резьбы, изготовления, заточки шестерней.
  6. Долбежные, протяжные, строгальные машины. Занимают 4% от массы металлорежущего оборудования.
  7. Фрезерные станки. Занимают 15 % от общей массы. Обработка металлических заготовок происходит благодаря вращению фрез разной формы.
  8. Разрезные установки. Используются для разделения арматуры, профилей, уголков.
  9. Машины для выполнения различных операций, связанных с резанием.

Классификация по универсальности

Отдельное разделение металлорежущих станков — по их универсальности. Выделяется две группы:

  1. Установки узконаправленного профиля. Используются для выполнения одной определенной технологической операции.
  2. Универсальные агрегаты. Представляют собой крупногабаритные конструкции, которые предназначены для выполнения различных технологических операций.

Классификация по степени точности

По точности металлорежущие машины бывают нескольких видов, каждый из которых имеет свою маркировку:

  1. Повышенная — обозначается буквой П.
  2. Нормальное — обозначение Н.
  3. Высокая — обозначается буквой В.
  4. Особо высокая — обозначение А.
  5. Наиболее высокая точность — обозначается буквой С.

Чтобы использовать агрегаты с маркировкой В, А, С, требуется заранее подготовить помещение. В нем должен поддерживаться постоянный температурный режим, уровень влажности.

Классификация по степени автоматизации

По степени автоматизации выделяют такие типы металлорежущих станков:

  1. Модели с ручным управлением. Рабочему нужно убирать, подготавливать заготовки, настраивать все подвижные элементы самостоятельно, координировать рабочий процесс.
  2. Полуавтоматические машины. Рабочему требуется менять детали самостоятельно, включать, выключать подвижные механизмы.
  3. Автоматы — агрегаты, которые выполняют обработку заготовок самостоятельно. Используются при серийном производстве.
  4. Оборудование с ЧПУ. Оператор задает требуемый алгоритм через программу. Подвижные механизмы работают самостоятельно, подбирают оптимальные режимы, загружают, выгружают детали.

Станки с ЧПУ постепенно вытесняют другие установки, благодаря высокой точности обработки, повышенной производительности.


Металлорежущий автоматический станок

Классификация по массе

Промышленные металлорежущие машины разделяются по массе. Выделяют:

  1. Легкие — конструкции весят до 1000 кг.
  2. Средние — масса начинается от 1 тонны, заканчивается 10 тоннами.
  3. Крупные — масса от 16 до 30 тонн.
  4. Тяжелые — масса от 30 до 100 тонн.
  5. Сверхтяжелые — конструкции весят более 100 тонн.

Обозначения указываются в техническом паспорте.

Карусельные станки

Токарно-карусельные станки обычно применяют для обработки концентрических деталей с большими габаритами и массой, установка и закрепление которых на вертикальных планшайбах и в патронах горизонтальных токарных станков затруднены или невозможны. Пример такой детали показан на рис. 11.18.

Рис. 11.18.Обработка вагонного колеса на карусельном станке:1

– колесо;2 – приспособление;3 – планшайба

Обрабатываемая деталь крепится к планшайбе с помощью болтов, скоб или угольников.

На токарно-карусельных станках планшайба совершает вращательное главное движение вокруг вертикальной оси с частотой в пределах 1,6–80 мин-1. Движение подачи сообщается инструменту.

Станки выпускают двух разновидностей: одностоечные (см. рис. 11.15, а)

– с диаметром планшайбы до 1,6 м и двухстоечные (см. рис. 11.15,б), на которых можно обрабатывать детали диаметром до 24 м. Станками управляют с пульта управления.

Используя токарный станок одной из современных моделей, можно выполнять достаточно большой перечень технологических операций по обработке металла. Но преимущественно на таком оборудовании выполняют обработку наружных и внутренних поверхностей заготовок, имеющих цилиндрическую, коническую и фасонную конфигурацию.

Современный токарный станок

Общие сведения

Токарные универсальные станки (рис. 1) предназначены для обработки тел вращения в основном при помощи операций резания или точения.

Рисунок 1. Универсальный токарный станок.

Рисунок 1. Универсальный токарный станок.

Изначально понятие «универсальный станок» было применено в первой половине 19 века, когда стремительно развивающаяся отрасль станкостроения отошла от привычной на то время модели конструирования узкопрофильных станков. Технологические возможности токарных станков стали стремительно развиваться. Например, обычный винторезный станок, предназначенный для создания резьб различных профилей, был дополнен усовершенствованным суппортом. Это позволило не только нарезать резьбы, но и производить ряд простых токарных операций, таких как точение, торцевание, выполнение проточек и др.

В современном мире понятие «универсальный токарный станок» означает, что данный станок не является узкопрофильным, ориентированным на производство конкретных операций, а способен совершать комплекс токарных и других операций. Объединение в одном станке широкого функционала позволило получить ряд преимуществ перед узкопрофильными:

  • уменьшение количества и специфики станков для изготовления детали;
  • повышение скорости обработки, связанное с отсутствием необходимости перестановки заготовки на другой станок;
  • уменьшение требуемой площади для размещения оборудования;
  • снижение энергоемкости металлорежущих операция, что в итоге ведет к снижению конечной стоимости изготавливаемых деталей.

Таблица фигур металлорежущих станков

Наименование станков Шифр группы Шифр типа
1 2 3 4 5 6 7 8 9
Резервные
Токарные 1 Автоматы и полуавтоматы: Токарно- Pевольверные Сверлильно- отрезные Карусельные Токарные и лобовые Многорезцевые и копировальные Специализи- рованные Разные токарные
специализи- рованные одношпин- дельные многошпин- дельные
Сверлильные и расточные 2 Вертикально- сверлильные Полуавтоматы Координатно-расточные Радиально- сверлильные Горизонтально- расточные Алмазно- расточные Горизонтально- сверлильные Разные сверлильные
одношпин- дельные многошпин- дельные
Шлифовальные и доводочные 3 Круглошли- фовальные Внутришли- фовальные Обдирочно- шлифовальные Специализи- рованные шлифовальные Заточные Плоско- шлифовальные Притирочные, полировальные, хонинговальные, доводочные Разные образивные
Электро- физические и электро- химические 4 Светолучевые Электро- химические Электро- искровые Электро- эрозионные, ультрозвуковые прошивочные Анодно- механические отрезные
Зубо- и резьбо-обрабатываю- щие 5 Резьбо- нарезные Зубодолбежные для обработки цилиндри- ческих колес Зуборезные для обработки конических колес Зубофрезер- ные для обработки цилиндрических колес и шлицевых валов Для нарезания червячных колес Для обработки торцов зубьев колес Резьбофре- зерные Зубоотделоч- ные, провероч- ные и обкатные Зубо- и резь- бошлифоваль- ные Разные зубо- и резьбо- обрабатываю- шие
Фрезерные 6 Вертикально- фрезерные консольные Фрезерные не- прерывного действия Продольные одностоеч- ные Копироваль- ные и грави- ровальные Вертикаль- ные безконсольные Продольные двухстоеч- ные Консольно- фрезерные опе- рационные Горизон- тально- фрезерные консольные Разные фрезерные
Строгальные, долбёжные, протяжные 7 Продольные Поперечно- строгальные Долбёжные Протяжные горизонталь- ные Протяжные вертикальные для протягивания Разные строгальные
одно- стоечные двух- стоечные внутренного наружного
Разрезные 8 Отрезные, оснащенные Правильно- отрезные Пилы
токарным резцом шлифоваль- ным кругом гладким или насеченным диском ленточные дисковые Ножовочные
Разные 9 Муфто- и трубообра- батывающие Пило- насекальные Правильно- и безцентрово- обдирочные Балансировочные Для испыта- ния инструментов Делитель- ные машины Балансиро- вочные

Устройство оборудования

Традиционно в токарных станках формообразующее движение — это вращение главного шпинделя, а движение подачи — перемещение суппорта в поперченном к оси вращения направлении. При такой схеме процесса резания неизбежен ряд конструктивных сложностей по обеспечению жесткости, виброустойчивости и точности позиционирования суппорта, особенно при обработке деталей повышенной точности на больших скоростях. Для разрешения этой проблемы швейцарские конструкторы нашли нестандартное и революционное по тем временам решение. Они создали ручной станок (а затем и токарный автомат), в котором суппорт с инструментом находится в неподвижном состоянии, а движение подачи осуществляется подвижной шпиндельной бабкой по направлению оси вращения (т.е. вращающаяся деталь надвигается на неподвижный резец).

Хотя по своим производственным характеристикам токарный автомат продольного точения с ЧПУ значительно отличается от первых станков этого типа, он имеет ту же традиционную компоновку и состав основных узлов и агрегатов:

  • сплошная литая станина с направляющими для передней бабки;
  • подвижная бабка с полым шпинделем и цанговым зажимом;
  • люнетная втулка;
  • блок неподвижных суппортов с резцами;
  • приспособление для подачи прутковых заготовок через шпиндель.

Современный токарный автомат представляет собой многофункциональный обрабатывающий центр с числовым программным управлением. Помимо традиционных компонентов такое оборудования может включать в себя:

  • противошпиндель;
  • блок или револьверную головку с приводным инструментом;
  • позиционируемые в разных плоскостях блоки резцов;
  • магазин заготовок;
  • ловитель деталей и конвейер для готовых деталей;
  • систему подачи СОЖ;
  • конвейер стружкоудаления.

На станках такого типа можно выполнять независимую обработку резцовым и приводным инструментом одновременно двух деталей, закрепленных в шпинделе и противошпинделе. Кроме того, точная синхронизация вращения шпинделей дает возможность передавать обрабатываемую заготовку из одного шпинделя в другой, что позволяет производить за одну установку обработку обоих торцов детали. А наличие револьверной головки и различных блоков резцового и приводного инструмента дает возможность выполнять на одной установке детали весь спектр необходимых технологических операций: от точения, сверления и нарезания резьбы до плоского и контурного фрезерования.

К специфическим особенностям токарных автоматов продольного точения можно отнести высокие требования к качеству заготовок.

Считается, что точность обрабатываемого прутка, профиля или проволоки должны быть на квалитет вышее, чем получаемая из них деталь. Другая особенность — необходимость использования для повышения точности обработки невращающихся люнетных втулок, которые склонны к износу и нагреву.

Разница между автоматом и полуавтоматом

Различия между автоматом и полуавтоматом не вызывают сомнений, хотя и называются они похоже, и способ сваривания подобен.

В этом процессе человек выполняет функцию настройщика. Ему не нужно поджигать дугу, вести шов или следить за процессом сваривания. Ему достаточно выбрать сварочный режим и «приказать» автомату его выполнить.

Абсолютно другим способом является полуавтоматическое сваривание. Хоть при нем так же используется присадочная проволока, газ, флюс другое сырье, тем не менее, сварщиком выполняется вся работа, а не только настройка аппарата.

То есть, он и горелку ведет, и шов формирует. Автоматически подается только сварочная проволока, оттуда и название «полуавтоматической сварки».

Применение и эксплуатация автомата продольного точения

Основным назначение данной группы станков является изготовление деталей и материалов одинакового характера, или иными словами данное оборудование широко применяется для производства материалов одной серии, размера и калибровки. Как правило, сами части, изготавливаемые на данном оборудовании, выполняются из такого материала, как холоднонатянутый откалиброванный прут из металла, так же изготовление происходит из фасонного материала и профиля, используется так же проволока, которая связана в бунты.

Точению на данном автомате продольного точения могут подвергаться любые материалы, от меди до легированной стали. То есть этот токарный станок можно назвать универсальным автоматом, за его способность работать с любым видом материала.

Классификация токарных автоматов

Токарные автоматы и полуавтоматы — это отдельная группа токарного оборудования, предназначенная для высокоскоростного массового выпуска малоразмерных деталей цилиндрической формы. Одной из их характерных особенностей является то, что в качестве заготовки на многих видах этого оборудования используется калиброванные пруток или проволока, подаваемая в зону обработки через полый шпиндель. Основные виды материалов, обрабатываемых на этих станках — это обычные и легированные сорта сталей, сплавы алюминия, латунь и другие сплавы меди.

Классификация токарных автоматов и полуавтоматов производится по следующим признакам:

  • область применения (специализированные, универсальные);
  • компоновка (вертикальные, горизонтальные;
  • количество шпинделей;
  • принцип подачи и фиксации заготовки;
  • тип управления (механическое, электромеханическое, электронное с цифровым приводом);
  • способ обработки;

Внутри классификационных групп используют дополнительные признаки, связанные с технологическими особенностями, назначением и видами обработки. Поэтому одношпиндельные токарные полуавтоматы, простейшие кулачковые токарные автоматы и обрабатывающие центры с продольным точением имеют идентичные названия, которые отличаются лишь указанием на вид управления и дополнительное оборудование. К примеру, полное название одной из групп современных автоматов продольного точения согласно этой классификации может звучать так: «универсальные горизонтальные одношпиндельные прутковые токарные автоматы продольного точения с ЧПУ, противошпинделем и револьверной головкой».

Дополнительный шпиндель станка продольного точения относят к дополнительному оборудованию, поэтому с учетом наличия револьверной головки его также можно назвать «одношпиндельный токарно-револьверный автомат продольного точения».

А токарный многошпиндельный автомат — это станок со шпиндельным блоком, состоящим из нескольких параллельных шпинделей, который смонтирован в передней бабке. Общее количество шпинделей в таком оборудовании — от двух до шести. Двухшпиндельные станки встречаются нечасто, а наибольшее распространение получил шестишпиндельный токарный автомат.

В таком токарном станке количество расположенных по кругу неподвижных суппортов с резцами соответствует числу одновременно вращающихся шпинделей. При повороте блока каждый шпиндель с зажатой в нем заготовкой перемещается в следующую позицию к очередному суппорту. На каждом суппорте установлены разные резцы, выполняющие точение определенной поверхности заготовки. Таким образом, за шесть фиксированных позиций поворота шпиндельного блока каждая из шести деталей подвергается обработке разными резцами шести суппортов.

Классификация

Из-за многообразия видов токарных автоматов, человеку без опыта сложно их отличать. Для этого было создано несколько классификаций. В них указываются отличия автоматов по выполняемым операциям или конструкции.

По назначению

Любое промышленное оборудование можно разделить по назначение. Автоматические токарные станки бывают двух типов:

  1. Специализированные — используются при проведении определённой операции с заготовкой. Не подлежат перенастройке.
  2. Универсальные — оборудование которое может выполнять различные операции с заготовками.

Также существуют полуавтоматы, которые используется для изготовления штучных деталей.

По расположению шпинделей

Если говорить о расположении рабочей части токарного автомата, можно выделить две конструкции:

  • вертикальный шпиндель,
  • горизонтальный шпиндель.

Перемещение ключевых элементов оборудования и сам процесс обработки зависит от расположения шпинделя.

По количеству шпинделей

Устройства различаются и по количеству подвижных элементов:

  • одношпиндельные — предназначены для обработки одной заготовки,
  • многошпиндельные — одновременно могут обрабатывать несколько заготовок.

Существует несколько типов одношпиндельных автоматов. Каждый их них представляет собой отдельную конструкцию, выполняющую определённые операции.

Фасонно-отрезные

Фасонно-отрезные автоматы используются для изготовления коротких заготовок, у которых небольшой диаметр. На выходе получается простая форма. Принцип работы заключается в том, что заготовка закрепляется во вращающемся шпинделе. Для обработки детали в суппортах закрепляются резцы. Количество суппортов может достигать 4. Перемещать их можно по поперечному направлению. В новых моделях есть специальные направляющие, которые позволяют перемещать суппорт вдоль оси шпинделя.

Дополнительно в фасонно-отрезных автоматах устанавливается упор. Его можно передвигать для увеличения или уменьшения длины заготовки.

Продольного точения

Токарный автомат продольного точения применяется при производстве длинных деталей с малым сечением из металлического прутка. Используется на предприятиях, занимающихся приборостроением или часовым производством. С помощью цангового патрона заготовка закрепляется в шпинделе. Он закреплён на подвижной бабке, которая передвигается по направляющим. Резцы же остаются неподвижными. Они прочно закрепляются в суппортах.

https://youtube.com/watch?v=9BWWP1K9ps0

Токарно-револьверные

Токарно-револьверные автоматы используются на производстве при изготовлении изделий сложной формы. При работе применяется металлический пруток. Некоторые модели предназначены для создания штучных заготовок. Металлическое изделие или прут закрепляется в подвижном шпинделе. Револьверная головка начинает автоматически перемещаться. Суппорты совершают поперечные движения.

История появления и развития оборудования

Считается, что первые токарные станки появились на территории Европы в 16-17 веке. В те времена они изготавливались из деревянных элементов и приводились в движение усилиями человека. Он мог раскручивать подвижное колесо руками или в дальнейшем вращал цепь, закреплённую на звёздочке.

Активного развития токарное производство не получало до 18 века. Только в первой части 18 века, в промышленности начали активно использоваться металлические механизмы. Ко второй половине 19 века, стараниями американских мастеров, оборудование было модернизировано и уже напоминало современный токарный станок. Работал механизм благодаря электродвигателю, появилась возможность выбирать скорость раскрутки шпинделя.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: