Чугун: понятие, производство, особенности, структура, свойства и применение

Доэвтектический чугун

Графитовые образования ( 10 — 100 А), возникающие над линией ликвидуса в доэвтектических чугунах, обладают развитой поверхностью, а свойства такой системы ( жидкость дисперсные образования) зависят от свойств и размеров входящих в нее поверхностей раздела. Пинакоиды графита являются устойчивыми образованиями. Выдержка при 1700 С не устраняет полностью микронеоднородность расплава. Таким образом, микрогетерогенность расплавов чугуна имеет наследственное происхождение, связанное с неполным растворением углерода в процессе плавки. На основании экспериментальных данных можно предположить, что дисперсные выделения графита начинаются выше температуры ликвидуса.  

Титан понижает температуру эвтектического превращения и способствует переохлаждению чугуна, при содержании до 0 5 % в доэвтектическом чугуне способствует графитизации и выделению графита в виде мелких пластин. Титан является хорошим раскислителем, способствует равномерному распределению в чугуне графита. Титан нейтрализует действие хрома в чугуне, являясь модификатором, вследствие чего отпадает необходимость в повышении содержания кремния. Титан способствует повышению механических свойств, особенно прочности высокоуглеродистых чугунов. При содержании 0 18 — 0 20 % титан с углеродом образуют карбиды и препятствуют графитизации. Титан используют как модификатор при производстве ковкого чугуна, но для отливок из высокопрочного чугуна Ti нежелательная примесь, так как препятствует образованию шаровидного графита.  

В зависимости от концентрации углерода в сплаве чугуны разделяются на доэвтектические, эвтектиче: кие и заэвтектические: доэвтектические чугуны содержат 2 14 — 4 3 % С и имеют структуру перлит — Ь цементит; эвтектические чугуны содержат 4 3 % С и состоят из ледебурита; заэвтектический чугун содержит более 4 3 % С, имеет структуру ледебурит цементит.  

Рассмотрим в соответствии с диаграммой состояния железо — углерод фазовые превращения, происходящие при охлаждении из жидкого состояния в доэвтектическом чугуне, содержащем 3 % С.  

Такой же распавшийся аустенит наблюдается также и на избыточных ( темных) участках, содержащихся в большем или меньшем количестве в доэвтектических чугунах ( фиг.  

Жидкотекучесть чугуна характеризует заполнение литейной формы и зависит главным образом от химического состава и температуры заливки С, Si, Р и Си повышают жидкотекучесть доэвтектического чугуна, a S и Сг понижают ее; влияние Мп и Ni на жидкотекучесть незначительно.  

Точка С ( 4 3 % углерода) представляет собой эвтектическую точку и разделяет сплавы, содержащие от 2 до 6 67 % углерода ( чугуны), на две группы: сплавы, содержащие менее 4 3 % С, — доэвтектические чугуны, а сплавы, содержащие более 4 3 % С, — заэвтектические чугуны. Следует подчеркнуть, что в машиностроении практическое значение имеют доэвтектические и эвтектические чугуны, а заэвтектические чугуны не применяются.  

Влияние углерода на твердость хромистых чугунов при содержании кремния, %.  

Эвтектический состав чугунов с 30 — 35 % Сг приходится на — 2 5 % С. Доэвтектический чугун имеет структуру твердого раствора хромистого феррита и эвтектических карбидов, количество которых зависит от содержания углерода.  

Твердая фаза в области, лежащей между линиями EGF и PSK с содержанием углерода более 2 14 %, соответствующая белым чугунам, имеет различный состав. Доэвтектические чугуны ( 2 14 — 4 3 % углерода) состоят из аустенита и ледебурита, эв тектические ( 4 3 %) из ледебурита и заэвтектические ( 4 3 — 6 67 %) из цементита и ледебурита. При этом, в отличие от сталей, температура плавления чугунов ( линия EGF) постоянна и не зависит от содержания в них углерода.  

Чугуны по структурным свойствам подразделяют на доэвтек-тические и заэвтектические относительно эвтектического состава 4 3 % С. Доэвтектические чугуны имеют перлитно-ледебуритную структуру, а заэвтектические — цементитно-ледебуритную.  

Во всех чугунах имеется аустенит. В доэвтектических чугунах имеется свободный аустенит ( см. сплав / — /, фиг.  

Наконец, в доэвтектических чугунах первичные выделения аустенита меняют свою концентрацию при охлаждении от точки 3 до точки 4 ( сплав / CJ от 2 до 0 8 % С, и в точке 4 происходит перлитное превращение. Структура такого доэвтектического чугуна состоит из перлита, ледебурита и вторичного цементита. Структура доэвтектического чугуна показана на фиг.  

Наконец, в доэвтектических чугунах первичные выделения аусте-нита меняют свою концентрацию при охлаждении от точки 3 до точки 4 ( сплав KJ) от 2 14 до 0 8 % С, и в точке 4 происходит перлитное превращение. Структура такого доэвтектического чугуна состоит из перлита, ледебурита и вторичного цементита.  

Производственные технологии

Как известно, чугун производится в специальных доменных печах. Основным сырьем для его получения служит железная руда. Технологический процесс изготовления состоит в восстановлении оксидов железной руды и получении в результате этого иного материала — чугуна. Для его изготовления используются такие виды топлива, как кокс, термоантрацит, природный газ.

Для производства одной тонны чугуна требуется около 550 килограмм кокса и приблизительно тонна воды. Объемы загружаемой в печь руды будут зависеть от содержания в ней железа. Как правило используют руду, в составе которой содержится железа не менее 70%. Все дело в том, что экономически нецелесообразно использовать меньшую его концентрацию.

Первым этапом производства чугуна является его выплавка. В доменную печь засыпается руда, а затем — коксующийся уголь, который необходим для нагнетания и поддержания требуемой температуры внутри шахты печи. Эти составляющие во время горения принимают активное участие в протекающих химических реакциях в качестве восстановителей железа.

Тем временем в печь погружается флюс, который выступает в роли катализатора. Ускоряя плавку пород, он тем самым поддерживает скорейшее высвобождение железа

Немаловажно знать, что перед загрузкой в печь руда проходит необходимую предварительную обработку. Она измельчается на дробильной установке, поскольку более мелкие частицы плавятся быстрее

Затем ее промывают, чтобы удалить частицы, не содержащие металл. Далее сырье подвергается обжигу, вследствие чего из него извлекается сера и другие инородные компоненты.

На втором этапе производства в заполненную и готовую к эксплуатации печь подается через специальные горелки природный газ. Кокс участвует в разогреве сырья. Происходит выделение углерода, который, соединяясь с кислородом, образует оксид. Он, в свою очередь, способствует восстановлению железа из руды.

При увеличении объема газа в печи снижается скорость протекания химической реакции. Она может и совсем остановиться при достижении определённого соотношения газа. Углерод проникает в сплав и соединяется с железом, при этом образуя чугун. Нерасплавленные элементы остаются на поверхности и вскоре удаляются. Такие отходы называются шлаком. Его используют для изготовления других материалов.

Присутствие в железоуглеродистых сплавах

Чугуны

Ледебуритная смесь возникает в чистых железоуглеродистых сплавах в интервале концентраций углерода от 2 % до 6,67 %, что соответствует чугунам. Механизм образования ледебурита в доэвтектических (левее точки эвтектики, соответствующей 4,3 % углерода, на диаграмме железо-углерод), эвтектических и заэвтектических (правее точки эвтэктики) чугунах различается.

в доэвтектических чугунах

При охлаждении жидкой фазы состава доэвтектического чугуна первым начинает кристаллизоваться аустенит, вследствие чего состав жидкой фазы начинает смещаться в сторону увеличения концентрации углерода (ввиду меньшей растворимости углерода в аустените). По достижении точки эвтектики (4,3 % углерода, 1147 °C) начинается кристаллизация эвтектики — ледебурита. В процессе дальнейшего охлаждения чугуна в интервале температур от 1147 °C до 727 °C аустенит обедняется углеродом и выделяется вторичный цементит. Вторичный цементит, выделяющийся по границам зерен аустенита, сливается с цементитом ледебурита, поэтому практически не виден под микроскопом. При небольшом переохлаждении ниже 727 °C аустенит по эвтектоидной реакции превращается в перлит. Таким образом, в доэвтектических белых чугунах, при комнатной температуре, ледебурит, как структурная составляющая, присутствует наряду с перлитом и вторичным цементитом.

в эвтектическом чугуне

При охлаждении жидкой фазы состава точки эвтектики до температуры 1147 °C начинается одновременная кристаллизация смеси аустенита и цементита — ледебурита. В дальнейшем аустенит распадается на феррито-цементитную смесь (перлит).

в заэвтектических чугунах

В заэвтектических белых чугунах из жидкости кристаллизуется первичный цементит в виде плоских игл, затем образуется ледебурит. При комнатной температуре эаэвтектический белый чугун содержит две структурные составляющие: первичный цементит и ледебурит.

Ледебурит может образовываться в сталях если в них, во-первых, содержание углерода достаточно велико (свыше 0,7 % (~1,3 %—1,5 %), что соответствует инструментальным сталям), и, во-вторых, при высоком содержании карбидообразующих легирующих элементов (Cr, W, Ti, Mo и др.). Введение этих легирующих элементов, в больших количествах, уменьшает растворимость углерода в аустените и перлите, что, в определённых случаях, и приводит к возможности выделения эвтектики при, сравнительно, малых содержаниях углерода. Такие стали (например, быстрорежущая) называют ледебуритными.

Степень — эвтектичность — чугун

Степень эвтектичности чугуна определяется долей эвтектики в его структуре. В случае чистых железоуглеродистых сплавов она вычисляется по правилу рычага на коноде ЕС ( или Е С) эвтектического превращения ( фиг.  

Степень эвтектичности чугуна определяется долей эвтектики в его структуре.  

Структурная диаграмма Н. Г. Гиршо.  

Прямые линии Са на диаграмме показывают степень эвтектичности чугуна с учетом углеродного эквивалента. Если эта величина равна 4 25, то чугун эвтектический; если она меньше 4 25, то чугун доэвтектпческий.  

На диаграммах отражено влияние кремния на степень эвтектичности чугуна: по мере увеличения его содержания снижается ликвидус ТБ и сужается двухфазная область Ж — — А.  

Структурная диаграмма Гиршовича-Иоффе ( немодифицированный чугун. Структура металлической основы. Я — перлит. Ц — цементит. Ф — нормальный феррит. Ф — анормальный феррит. Структура графита. / и / / — пластинчатый неориентированный и междендритный. / / / — точечный.  

Выше также было показано, что содержание и структура графитной фазы в чугуне связаны со степенью эвтектичности чугуна, что подтверждается анализом диаграмм Гиршовича — Иоффе. Поэтому в основу конодной диаграммы было также положено семейство линий — изоэвтектик, представляющих собой геометрическое место фигуративных точек чугуна с одинаковой степенью эвтектичности и делящих коноды на пропорциональные отрезки.  

В диаграмме Колло и номограмме Кола отражена зависимость предела прочности при растяжении, твердости и модуля упругости от степени эвтектичности чугуна.  

Содержание газов в чугуне в зависимости от степени эвтектичности 5Э.  

Из общего количества газов в чугуне содержание водорода составляет 50 — 65 %, оно снижается с увеличением степени эвтектичности чугуна. Количество водорода, выделившегося при хранении, составляет около 80 % от общего его содержания.  

Сопоставление кинетических диаграмм кристаллизации хромистых чугунов близ эвтектического состава ( рис. 64) показывает, что увеличение содержания хрома не оказывает заметного влияния яа относительное положение линии появления аустенита БЗ, следовательно, хром незначительно влияет на степень эвтектичности чугуна. Температурный интервал выделения графита уменьшается и при концентрациях 1 92 % Сг — графит из расплава не выделяется. Сдвиг линии ОФ вправо свидетельствует о том, что с ростом содержания хрома выделение графита затрудняется. Уместно сопоставить с этим влияние марганца ( см. рис. 58), увеличение содержания которого в чугуне не приводит к расширению инкубационного периода появления графита в жидкости.  

При затвердевании доэвтектических чугунов вначале кристаллизуется избыточный аустенит. Как и в сером до-эвтектическом чугуне, он растет в виде трехмерных денд-ритов. Их количество, величина и разветвленность определяются степенью эвтектичности чугуна и условиями охлаждения. Затем происходит одновременная кристаллизация аустенита и цементита в ходе эвтектического распада жидкого раствора.  

Образование шаровидного графита в высококремнистых чугунах происходит лишь в условиях, обеспечивающих значительное переохлаждение расплава. В практике производства отливок большое значение имеет образование сильно разветвленного, в том числе междендритного графита при ускоренном затвердевании чугуна с повышенным содержанием кремния. В случае медленной кристаллизации чугуна, напротив, повышение содержания кремния приводит к образованию более грубого графита. Это является следствием повышения степени эвтектичности чугуна при добавке к нему кремния и обнаруживается прежде всего в малоуглеродистых чугунах.  

Особенности сплава

Главная особенность чугуна скрыта в процессе его изготовления. Дело в том, что у разных видов этого сплава температура плавления достигает 1200ºС, в то время как у стали она составляет 1500 ºС. На этот фактор влияет слишком высокое содержание углерода. Атомы железа и углерода между собой имеют не очень тесные связи.

Когда происходит выплавка, атомы углерода не могут целиком внедриться в молекулярную решетку железа, из-за чего чугунный сплав приобретает хрупкость. В связи с этим его не используют в производстве деталей, которые будут постоянно подвергаться нагрузке.

Этот материал относится к отрасли черной металлургии и по своим характеристикам схож со сталью. Изделия из чугуна и стали нашли широкое применение в повседневной жизни, и оно является целиком оправданным.

Если сравнивать характеристики этих металлов, можно сделать следующие заключения:

  1. Стоимость стальных изделий выше стоимости чугунных.
  2. Различия в цвете: чугун темный и матовый, а сталь — светлая и блестящая.
  3. Сталь хуже поддается литью, но, в отличие от чугуна, легче поддается ковке и сварке.
  4. Сталь обладает большей прочностью, нежели чугунный сплав.
  5. Сталь тяжелее по весу.
  6. В ней содержание углерода ниже, чем в чугуне.

Промышленное получение

Железоуглеродистые сплавы производятся металлургическими заводами из разных компонентов. Основа — железо с углеродом. Этапы производственного процесса:

  1. Подготовка расходного сырья (руды). Ее сортируют по размерам кусков, химическому составу. Бедные руды обогащаются требуемыми компонентами. Пустые породы удаляются.
  2. Подготовка топлива. Коксовый уголь проходит процедуру грохочения. Она нужна, чтобы удалить из топлива посторонние примеси, которые могут привести к тепловым потерям при плавке руды.
  3. Подготовка флюса. Вещества, которые будет применяться для производства чугуна измельчают. При этом отсеивается мелочь, удаляются сторонние примеси.
  4. Загрузка расходных материалов, руды в доменную печь. Сначала она заполняется коксом, сверху выкладывается руда, поверх нее засыпается еще один слой кокса. Внутрь вдувается разогретый воздух для поддержания температуры плавления металла. При сгорании кокса выделяется большое количество углекислого газа, который проходит через остатки кокса, образуя соединение СО. В процессе восстановления железо набирается твердости. Постепенно углерод начинает растворяться. Жидкий чугун подается к специальным ковшам, из которых разливается по формам.

Для производства чугуна применяются большие доменные печи. Их высота может достигать 30 м, а внутренний диаметр — 12 м.

Доменная печь (Фото: Instagram / viktormacha)

Характерные черты и свойства чугуна

Этот металлический сплав обладает такими свойствами:

  1. Физические свойства: удельный вес, действительная усадка, коэффициент линейного расширения. Например, содержание углерода в чугуне напрямую влияет на его удельный вес.
  2. Тепловые свойства. Теплопроводность обычно рассчитывают по правилу смещения. Для твердого состояния металла объемная теплоемкость составляет 1 кал/см3*оС. Если металл находится в жидком состоянии, то она примерно равна 1,5 кал/см3*оС.
  3. Механические свойства. Примечательно, что на эти свойства влияет как сама основа, так и форма и размеры графита. Серый чугун с перлитной основой является наиболее прочным, а с ферритной — самым пластичным. Пластинчатая форма графита характеризуется максимальным снижением прочности, в то время как у шаровидной формы это снижение минимально.
  4. Гидродинамические свойства. Наличие в составе марганца и серы влияет на вязкость материала. Также она имеет свойство увеличиваться, когда температура сплава переходит точку начала затвердевания.
  5. Технологические свойства. Этому металлу характерны отличные литейные качества, а также стойкость к износу и вибрации.
  6. Химические свойства. По мере убывания электродного потенциала структурные составляющие сплава располагаются в следующем порядке: цементит — фосфидная эвтектика — феррит.

На свойства сплава также оказывают влияние специальные примеси:

  • Добавление серы значительно уменьшает текучесть и снижает тугоплавкость.
  • Фосфор позволяет изготовить изделия разнообразной формы, но при этом уменьшает его прочность.
  • Добавление кремния уменьшает температуру плавления материала, а также заметно улучшает литейные свойства. Содержание кремния в различном процентном соотношении дает возможность получить сплавы разного цвета: от ферритного до чисто белого.
  • Присутствие в сплаве марганца значительно повышает твердость и прочность материала, но при этом ухудшаются его литейные и технологические качества.
  • Кроме этих примесей в состав сплава могут также входить иные компоненты. В таком случае материалы называют легированными. Чаще всего к чугуну примешиваются титан, алюминий, хром, медь и никель.

Что такое чугун

Итак, давайте узнаем, какие железоуглеродистые сплавы называют чугунами.

Понятие

Чугуном называется железоуглеродистый сплав с содержанием углерода, то есть под ним понимается материал, который состоит из сплава железа и углерода. Процентное содержание углерода в чугуне составляет более 2,14%. Последний элемент может входить в чугун в виде графита или цементита.

Данное видео рассказывает об особенностях чугуна:

Разновидности

Различают белый и серый чугун.

  • Углерод в белом чугуне представлен в виде карбида железа. Если переломить его, то можно увидеть белый отлив. В чистом виде белый чугун не используют. Его добавляют к процессу производства ковкого чугуна.
  • На изломе серый чугун имеет серебристый отлив. У этого вида чугуна большая сфера использования. Он хорошо поддается обработке резцами.

Кроме этого, чугуны бывают высокопрочные, ковкие и со специальными свойствами.

  • Высокопрочный чугун используют в целях повышения прочности изделия. Механические свойства такого чугуна позволяют это сделать на отлично. Высокопрочный чугун получают из серого в результате добавление к массе примеси магния.
  • Ковкий чугун — это разновидность серого. Название не означает, что этот чугун легко подвергают ковке. Он обладает повышенными свойствами пластичности. Его получают помощью отжига из белого чугуна.
  • Различают так же половинчатый чугун. В нем некоторая часть углерода находится виде графита, а оставшиеся часть в форме цементита.

Особенные черты

Особенность чугуна кроется в процессе его производства. Средняя температура плавления разных видов чугуна составляет 1200ºС. Это значение на 300 градусов меньше, чем у стали. Связано это с очень высоким содержанием углерода. Углерод и атомы железа имеют между собой не очень тесную связь.

Когда идет процесс выплавки, углерод не может полностью внедриться в решетку железа. В результате чугун принимает свойство хрупкости. Его нельзя использовать для изготовления деталей, на которых будет постоянно действовать нагрузка.

Чугун относится к материалам черной металлургии. Его характеристики часто сравнивают со сталью. Изделия из стали или чугуна широко используются в нашей жизни. Их применение является оправданным. Проведя сравнение характеристик, можно сказать следующее об этих двух материалах:

  • Стоимость чугунных изделий ниже стоимости стальных.
  • Материалы отличаются по цвету. Чугун – это темный матовый материал, а сталь – светлый и блестящий.
  • Чугун легче, чем сталь поддается литью. Но сталь легче сваривается и куется.
  • Чугун менее прочный, чем сталь.
  • По весу чугун легче стали.
  • В стали содержание углерода, выше чем в стали.

Плюсы и минусы

Чугун, как и любой материал, имеет положительные и отрицательные стороны.

К плюсам чугуна относят:

  • Углерод в чугуне может находиться в разном состоянии. Поэтому этот материал может быть двух видов (серый и белый).
  • Определенные виды чугуна обладают повышенной прочностью, поэтому чугун иногда ставят на одну линию со сталью.
  • Чугун может достаточно долго сохранять температуру. То есть при нагреве тепло равномерно распределяется по материалу и остается в нем длительное время.
  • По экологичности чугун является чистым материалом. Поэтому его часто используют для изготовления посуды, в которой впоследствии готовится пища.
  • Чугун стоек в кислотно-щелочной среде.
  • Чугун обладает хорошей гигиеничностью.
  • Материал отличается достаточно долгим сроком службы. Замечено, что чем продолжительнее используется чугун, тем его качество лучше.
  • Чугун – долговечный материал.
  • Чугун – это безвредный материал. Он не способен нанести организму даже маленького вреда.

К минусам чугуна относят:

  • Чугун покроется ржавчиной, если на нем непродолжительное время будет находиться вода.
  • Чугун – дорогостоящий материал. Однако этот минус оправдан. Чугун очень качественный, практичный и надежный. Предметы, изготовленные из него, так же получаются качественными и долговечными.
  • Для серого чугуна характерна маленькая пластичность.
  • Для белого чугуна характерна хрупкость. Он в основном идет на переплавку.

Промышленные стали и чугуны

Промышленная сталь и чугун являются многокомпонентными сплавами, которые, помимо железа и углерода, содержат так называемые банальные примеси. Постоянными примесями являются марганец, кремний, наличие которых является техническими характеристиками производства, фосфор, сера и кислород-азот, водород, которые не могут быть полностью удалены из металла. Содержание углерода и примесей влияет на свойства железоуглеродистых сплавов.

Углерод оказывает большое влияние на механические свойства стали.

Цементит обладает высокой твердостью и хрупок, поэтому увеличение количества повышает прочность и твердость стали, что снижает ее пластичность и прочность. содержание углерода в стали увеличивается, плотность, электропроводность, теплопроводность и проницаемость уменьшаются, а электрическое сопротивление увеличивается.

Кремний и марганец считаются полезными примесями. При выплавке стали ее добавляют для раскисления. При соединении с оксидом железа FeO он превращается в шлак в виде oxide. As в результате раскисления улучшаются свойства стали.

  • Если кремний останется в Стали после раскисления, то предел текучести возрастет, а способность к холодной работе под давлением снизится. Поэтому при штамповке стали необходимо снижать содержание кремния.
  • Марганец, не снижая пластичности, значительно повышает прочность стали, резко снижает ее хрупкость при высоких температурах(красный излом), выводит серу из расплава.

Фосфор и сера являются вредными примесями. Фосфор снижает пластичность и вязкость стали и облегчает ее растрескивание при низких температурах(холодная хрупкость).Сера снижает вязкость, пластичность, долговечность, свариваемость и коррозионную стойкость стали. Сера вызывает охрупчивание стали при высоких температурах. Содержание серы и фосфора в стали строго ограничено.

Rimoyt.com

Чугун. Виды чугуна: белый, серый, ковкий, высокопрочныйЧугун – сплав железа (Fe>90%) с углеродом (C от 2,14% до 6,67%). Углерод может содержаться в чугуне в виде графита (С) или цементита (Fe3C). Также чугун содержит примеси кремния, марганца, фосфора и серы. Чугуны со специальными свойствами содержат также легирующие элементы – хром, никель, медь, молибден и др. Чугун – наиболее широко применяемый материал для изготовления литых деталей, используемых при относительно невысоких напряжениях и малых динамических нагрузках. Преимущества чугуна в сравнении со сталью – высокие литейные свойства и небольшая стоимость. Чугуны также лучше обрабатываются резанием, чем большинство сталей (кроме автоматных сталей), но плохо свариваются, обладают меньшей прочностью, жесткостью и пластичностью. В зависимости от состояния углерода в чугуне различают: белый чугун серый чугун(ГОСТ 1412 — «Чугун с пластинчатым графитом для отливок») ковкий чугун(ГОСТ 1215 — «Отливки из ковкого чугуна») высокопрочный чугун(ГОСТ 7293 — «Чугун с шаровидным графитом для отливок»)

Белый чугун

В белом чугуне весь углерод находится в связанном состоянии в виде цементита Fe3C. У белого чугуна высокая износостойкость и твердость, однако он хрупок и плохо обрабатывается резанием, поэтому в машиностроении они находят ограниченное применение и идут, в основном, в передел на сталь. По содержанию углерода серый чугун подразделяют на:Доэвтектический с содержанием углерода от 2,14% до 4,3% Эвтектический с содержанием углерода 4,3% Заэвтектический с содержанием углерода от 4,3% до 6,67%. В сером, ковком, высокопрочном чугунах весь углерод или большая его часть находится в виде графита различной формы (их еще называют графитными).

Серый чугун

В структуре серых чугунов графит пластинчатой формы. Серые чугуны содержат: 3,2-3,5% углерода, 1,9-2,5% кремния, 0,5-0,8% марганца, 0,1-0,3% фосфора и менее 0,12% серы. Отливки деталей из серых чугунов получают в кокилях – земляных или металлических формах. Серый чугун находит широкое применение в машиностроении. Ввиду невысоких механических свойств у отливок из серого чугуна и простоты получения их применяют для изготовления деталей менее ответственного назначения, деталей, работающих при отсутствии ударных нагрузок. В частности из них делают крышки, шкивы, станины станков и прессов. Пример обозначения серого чугуна: СЧ32-52. Буквы обозначают серый чугун (СЧ), первое число обозначает предел прочности при растяжении (32 кгс/мм2 или 320 МПа), второе число – предел прочности при изгибе.

Ковкий чугун

В структуре ковких чугунов графит хлопьевидной формы. Ковкие чугуны содержат: 2,4-3,0% углерода, 0,8-1,4% кремния, 0,3-1,0% марганца, менее 0,2% фосфора, не более 0,1% серы. Ковкий чугун получают из белого чугуна в результате нагрева и длительной выдержки. Эту процедуру называют графитизирующим отжигом или томлением. Пример обозначения ковкого чугуна: КЧ45-6. Буквы обозначают ковкий чугун (КЧ), первое число — предел прочности при растяжении (45 кгс/мм2 или 450 МПа), второе – относительное удлинение в % (6%).

Высокопрочный чугун Высокопрочный чугун содержит графит шаровидной формы. Он имеет наиболее высокие прочностные свойства. Высокопрочный чугун содержит: 3,2-3,8% углерода, 1,9-2,6% кремния, 0,6-0,8% марганца, до 0,12% фосфора и не более 0,3% серы. Высокопрочный чугун получают путем модифицирования (т.е. введения добавки-модификатора – магния) жидкого расплава. Модификаторы способствуют образованию графитных включений шаровидной формы, благодаря чему механические свойства такого чугуна приближаются к свойствам угеродистых сталей, а литейные свойства выше (но ниже, чем у серых чугунов). Из высокопрочных чугунов изготавливают ответственные детали для машиностроения — поршни, цилиндры, коленчатые валы, тормозные колодки. Также из высокопрочного чугуна изготавливают трубы. Пример обозначения высокопрочного чугуна: ВЧ45-5. Буквы обозначают высокопрочный чугун (ВЧ), первое число обозначает предел прочности при растяжении (45 кгс/мм2 или 450 МПа), второе – относительное удлинение в %.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: