Полимеры

Степень — полимеризация — полимер

Степень полимеризации полимера, образовавшегося в стационарных условиях, не изменяется значительно во времени, так как полимеризация проводится лишь до небольших глубин превращения; тем не менее прямой пропорциональности между измеренной удельной вязкости t ] sp полимера и его концентрацией, как правило, не наблюдается; известно, что при графическом изображении rtsp / c как функции с обычно получается прямая с конечным наклоном. Чтобы применить уравнение (2.4), необходимо экстраполировать наблюдаемые значения удельной вязкости к нулевой концентрации.

Степень полимеризации полимера прямо пропорциональна скорости роста и обратно пропорциональна скорости обрыва и передачи цепи. Поэтому в присутствии добавок веществ, имеющих подвижные атомы, происходит снижение среднего молекулярного веса образующегося полимера. Изменяя температуру, количество и свойства вещества, которому передается кинетическая цепь, можно регулировать средний молекулярный вес полимеров. Вещества, легко вступающие в реакции передачи цепи и заметно не изменяющие скорость полимеризации, носят название регуляторов процесса полимеризации.

Поскольку степень полимеризации полимеров рассматриваемого типа имеет величину порядка десятков тысяч и более, ошибка, связанная с допущением о бесконечно большой длине, незначительна.

Величина степени полимеризации полимеров может варьировать в широких пределах: от п, равного нескольким единицам, до п, равного 5000 — 10000 и более. Полимеры с высокой степенью полимеризации называются высокополимерами, полимеры с низкой степенью полимеризации — олигомерами. Поэтому высокополимерные вещества являются и высокомолекулярными.

С увеличением степени полимеризации полимера расширяется температурный интервал высокоэластического состояния.

Как правило, степень полимеризации полимеров, используемых при получении волокна, должна быть ниже, чем пластических масс, и выше, чем у высокомолекулярных соединений, применяемых в производстве лаков. Необходимо учитывать также, что в процессе получения волокон из природных полимеров ( целлюлозы, белков) всегда происходит частичная деструкция макромолекул и, как следствие, понижение степени полимеризации, У синтетических полимеров, как правило, это не имеет места.

Схема процесса производства эмульсионного поливинилхлорида.

Решающее влияние на степень полимеризации полимера, характеризуемую обычно константой Фикентчера, имеет температура процесса полимеризации.

У химических волокон влияние степени полимеризации полимера на механические свойства волокна выражено менее отчетливо, чем у природных волокон.

У химических волокон влияние степени полимеризации полимера на механические свойства волокна выражено менее отчетливо.

Величина ип является функцией только степени полимеризации полимера. Отсюда следует, что чем больше моле лярная масса полимера, тем хуже он растворяется.

Зависимость деформации.

Зависимость величины интервала высокоэластичности от степени полимеризации полимера объясняется зависимостью T s от степени полимеризации, в то время как Тс ( после достижения определенной величины) уже не зависит от длины молекулы.

Количество инициатора и температура определяют степень полимеризации полимера и кинетику процесса.

Зависимость механических свойств волокон от степени полимеризации полимера наиболее отчетливо выявляется у природных волокон, для которых возможность изменений конфигурации макромолекул и их взаимного расположения, а также и надмолекулярной структуры путем вытягивания ограничена. При одной и той же структуре полимера степень полимеризации оказывает существенное влияние на основные показатели волокна — прочность при разрыве ( см. разд.

Какие бывают полимеры – классификация

В современной промышленности насчитывается несколько десятков разновидностей. Разделение происходит по химическому составу, агрегатному состоянию и эксплуатационным качествам.

По происхождению

К ним относятся:

  • • Синтетические. Являются самыми востребованными в производстве. Обладают исключительными особенностями из-за добавления и смешивания различных веществ.
  • • Искусственные. Изделия из такого вида окружают нас в быту.
  • • Природные (биополимеры).

По молекулярным соединениям

Различные химические свойства позволяют разделять на:

  • • Органические, которые используют для основания пластмассовой продукции.
  • • Комплексные, где одновременно применяются натуральные и синтетические вещества.
  • • Неорганические.

Классификации полимерных материалов

Зависимо от происхождения полимеры разделяют на синтетические и природные. Несмотря на востребованность природных составляющих, материалы искусственного происхождения, которые производят на низкомолекулярной основе, благодаря синтезу, пользуются большим спросом.

Различия по химическому составу позволяет делить полимерные материалы на:

  • неорганические, у которых нет однотипных соединений, при этом есть органические радикалы, в качестве дополнительных составляющих;
  • элементоорганические полимеры, отличаются способностью удерживать в органическом радикальном соединении, атомы неорганики, хорошо сочетающихся с органикой;
  • органические, которые используют, как основу для пластмассовых изделий.

Характерным отличием структуры, влияющим на свойства материала оказывает макромолекула. Ее вид позволяет разделить полимеры на:

  • плоские;
  • ленточного типа;
  • разветвленной структуры;
  • линейного характера;
  • сетчатого типа;
  • гребнеобразные полимеры;
  • прочие виды.

По свойствам соединений звеньев, полимерные материалы делят по полярности, влияющую на растворимость материалов в разных средах. Ее определяют по разобщению положительных и отрицательных зарядов. Характера этих связей позволяет разделить полимеры на:

  • гидрофильные;
  • гидрофобные;
  • амфильные.

Иначе говоря, можно отнести перечисленные категории к полярным, неполярным или смешанным. Кроме этого, полимеры имеют разные свойства при изменении температуры. Они бывают:

  • термопластичные, имеющие свойство размягчения, при увеличении градуса, а при понижении – твердеют;
  • термореактивные, подвержены разрушению структурных связей между звеньями.

Явным примером, подчеркивающим различие структуры, будет письмо, отправленное по почте, предварительно заклеенное в конверт. В процессе транспортировки, тщательно склеенные поверхности остаются невредимыми. Но стоит нагреть обработанное место на огне или с помощью раскаленного металлического предмета, как клей утратит свои свойства и конверт откроется.

Полимерные материалы делят на два типа: синтетический (искусственный) и огнеупорный. Синтетика встречается в различных сферах жизнедеятельности человека: в строительстве, промышленности, быту и даже – в одежде. Производство искусственного сырья началось в первые годы ХХ века. Первым запатентованным материалом была бакелитовая смола, которая при нагревании меняла форму.

Современные синтетические материалы подвержены влиянию огня и высоких температур, а некоторые из них могут воспламеняться. Чтобы избежать подобное используют добавки, а также синтезируют сырье с помощью хлора или брома. Галогенированный полимерный материал, который получается после обработки, при сжигании образует газ, способствующий повышению коррозии других материалов. Разнообразие структур полимеров по химическому составу позволяет разделить материалы на несколько видов, которые находят все большее применение в народном хозяйстве.

  1. Полиэтилен Известен по широко применяемой упаковке различного назначения. Свойства и низкая себестоимость сделала такие материалы популярными в разных отраслях. Различают полиэтилен низкого давления, который обладает прочной структурой молекул и высокого давления, с противоположными свойствами. Эти материалы имеют одинаковы по химическому составу, но различаются по структуре решетки.
  2. Полипропилен Прозрачный полимер изготовленный методикой экструзии с охлаждением методом полива или другим способом с раздувом. Не контактирует с маслами и жирами, не деформируется при температурных изменениях, пропускает водяные пары. Эти свойства материала применяются в пищевой и строительной отрасли.
  3. Поливинилхлорид Такие материалы с полимерной основой встречается реже других из-за способности быть хрупким и не эластичным. Был популярен в 60-е годы прошлого столетия, при сжигании образует диоксин. Современные материалы вытесняют эти полимеры за счет более высокой экологичности и улучшения структуры сырья.
  4. Полиолефин Благодаря разнообразному строению макромолекул, эти полимеры включает в себя составляющие элементы пропилена и полиэтилена. Более половины производимой полимерной продукции относят к полиофелинам. Стойкость к разрыву, нагреву и усадке, позволит в ближайшем будущем увеличить объемы изготовления этого сырья. Тем более, что экологичность, которой обладают такие материалы выше других полимеров, а при производстве и утилизации – не выделяет вредных веществ.

Виды полимеров

Существует множество классификаций полимеров по различным признакам (химической природе, термостойкости, строению цепи и так далее). В ниже приведенной таблице коротко рассмотрим основные виды полимеров. Классификация полимеров

Принцип Виды Определение Примеры
По происхождению (возникновению) Природные (натуральные) Те, что встречаются в естественных условиях, в природе. Созданы природой. ДНК, РНК, белки, крахмал, янтарь, шелк, целлюлоза, каучук натуральный
Синтетические Получены в лабораторных условиях человеком, не имеют отношения к природе. ПВХ, полиэтилен, фенолформальдегидные смолы, полипропилен, полиуретан и другие
Искусственные Созданы человеком в лабораторных условиях, но на основе природных полимеров. Целлулоид, ацетатцеллюлоза, нитроцеллюлоза
С точки зрения химической природы Органической природы Большая часть всех известных полимеров. В основе мономер органического вещества (состоит из атомов С, возможно включение атомов N, S, O, P и других). Все синтетические полимеры
Неорганической природы Основу составляют такие элементы, как Si, Ge, O, P, S, H и другие. Свойства полимеров: не бывают эластичными, не образуют макроцепей. Полисиланы, полидихлорфосфазен, полигерманы, поликремниевые кислоты
Элементоорганической природы Смесь органических и неорганических полимеров. Главная цепь — неорганика, боковые — органика. Полисилоксаны, поликарбоксилаты, полиорганоциклофосфазены.
Различие главной цепочки Гомоцепные Главная цепь представлена либо углеродом, либо кремнием. Полисиланы, полистирол, полиэтилен и другие.
Гетероцепные Основной остов из разных атомов. Полимеры примеры — полиамиды, белки, этиленгликоль.

Также различают полимеры линейного, сетчатого и разветвленного строения. Основа полимеров позволяет быть им термопластичными или термореактивными. Также они имеют различия по способности к деформации при обычных условиях.

Неорганические полимер

Неорганические полимеры имеют неорганические основные цепи и не содержат органических боковых радикалов. Их классифицируют по тем же признакам, что и органические полимеры: па конфигурации — линейные, разветвленные и пространственные; по происхождению — природные и синтетические, по составу основной цепи — гомо — и гетероцепные. Неорганические гомо — и гетера атомные цепи способны образовывать элементы групп III — VI Периодической системы. Такие гетероатомные частично ионные связи обычно прочнее чисто ковалентных. В отличие от органических полимеров неорганические ВМС не имеют длинных цепей и соответственно для них не характерно эластичное состояние. Так как, кроме углерода, другие элементы не могут образовывать ненасыщенных соединений, то синтез неорганических полимеров осуществляется, главным образом, путем поли-конденсации. Некоторую способность образовывать гомоцепные неорганические полимеры имеют бор, сера, олово. Большинство же элементов образуют гетероцепные полимеры, и в основном трех мерной структуры. Наиболее типичными представителями гетеро-цепных неорганических полимеров являются оксиды, которые можно считать продуктами поликонденсацин гндроксидов.

Неорганические полимеры отличаются по химическим и физическим свойствам от органических или элементоорганических полимеров, прежде всего, вследствие различной электронной структуры главной цепи и отсутствия органических обрамляющих групп. Электронная структура определяет возможность образования цепей полимерной молекулы. Обрамляющие группы модифицируют электронную структуру, защищают главную цепь полимеров от атаки нуклеофильными или электрофильны-ми реагентами и определяют характер меж.

Неорганические полимеры отличаются от органических и элементоорганических полимеров высокоупорядоченной кристаллической структурой. Они имеют больший модуль упругости и обладают повышенной стойкостью к термической и термоокислительной деструкции. Их температуры размягчения и плавления, а также нагревостойкость и термостойкость значительно выше, чем органических и элементоорганических полимеров.

Неорганические полимеры, относящиеся к группе сетчатых, широко распространены в земной коре в виде минералов. Часть их перерабатывается и используется в виде неорганических стекол или керамических материалов.

Неорганические полимеры находят все более широкое применение в качестве высокотемпературных материалов: покрытий, волокон, наполнителей для пластиков. Прочность на растяжение волокна из АЬОз составляет 70500 кГ / см2, а волокно из ZrO2 выдерживает повторные нагревания до 2480 С.

Неорганические полимеры построены из неорганических цепей.

Неорганические полимеры обладают не только термостойкостью и твердостью, но и, подобно органическим, могут быть эластичными. Например, стеклянное волокно не горит, не гниет, не впитывает влагу, не боится действия большинства кислот и щелочей; или синтетический асбест, отличающийся от природного большим постоянством свойств и химического состава, а также более высокой термостойкостью; или полученный полимер сульфида кремния, имеющий асбестоподобную структуру. Ныне твердо установлено, что неорганическая природа многих больших молекул не исключает эластичности и других типичных свойств органических полимеров. Таким образом, на границе органической и неорганической химии оформилась и успешно развивается новая ветвь — неорганические полимеры. Все новые и новые открытия совершаются в этой области.

Неорганические полимеры еще очень мало изучены, и в настоящее время расположение их в какие-либо классы затруднительно.

Неорганические полимеры еще очень мало изучены, и в настоящее время разделение их на классы затруднительно. Поэтому ниже перечислены только некоторые неорганические полимеры.

Неорганические полимеры состоят из неорганических атомов и не содержат органических боковых радикалов.

Неорганические полимеры — это полимеры, не содержащие углерод. В нефтепромысловой практике в основном используют органические и элементоорганические полимеры.

Неорганические полимеры имеют неорганические основные цепи и не содержат органических боковых радикалов.

Неорганические полимеры привлекают внимание многих исследователей при создании материалов, обладающих высокими техническими свойствами.

Неорганические полимеры отличаются от органических и элементоорганических полимеров высокоупорядоченной кристаллической структурой. Они имеют большой модуль упругости и повышенную стойкость к термоокислительной деструкции.

Неорганические полимеры, содержащие галогенные группы, обсуждаются в разд.

Материалы

Как мы писали выше, синтетика плохо переносит высокие температуры, воспламеняется и выделяет при тлении токсичные вещества. Во избежание этого химики экспериментальным способом добавляют различные примеси. При синтезе они используют бром или хлор. После обработки получается галогенизированное сырье, способное при сгорании выделять газ, который повышает коррозийность металлических изделий.

Мы рассмотрим примеры и определим, что относится к полимерным материалам:

  • • Самый знакомый всем – это полиэтилен. Из него изготавливают упаковку для различных целей, используется во всех отраслях народного хозяйства. Он различается по типам (низкого и высокого давления). Эти виды обладают одинаковым химическим составом, но отличаются молекулярной структурой.
  • • Пропилен. Благодаря своим характеристикам (легкость, высокие эксплуатационные качества, гибкость, эластичность, прочность, водонепроницаемость) широко применяется при строительстве жилых комплексов и промышленных объектов. Из него изготавливаются трубы для горячего и холодного водоснабжения, для отопительной системы. Они не подвержены коррозии, не деформируются при динамической и статистической нагрузках, не производят шум и не вибрируют. Единственный минус – вступают в реакцию с кислородом и не выносят ультрафиолет. Поэтому при монтаже необходимо устанавливать защитную систему.
  • • Поливинилхлорид. Что это за полимерные материалы и какие примеры можно привести, ведь все уже забыли об этом термине и области применения. Популярным они были в середине прошлого столетия. Они обладают хрупкостью и невысокой экологичностью, потому что при тлении выделяют ядовитый диоксин. Поэтому современные вещества вытеснили с рынка потребления старый образец.
  • • Полиолефин создан на основе составляющих полиэтилена и полипропилена. Более половины продукции во всем мире изготовлена из этого сырья. Так как он имеет огромное преимущество перед другими пластмассами. Он не разрывается, не дает усадку, не нагревается, а при утилизации и производстве не выделяет вредные для организма вещества.

Применение полимеров

Производство таких материалов началось в начале прошлого столетия, где при обработке целлюлозы и отходов нефтепереработки стали получать краску и пленку. Это позволило активному развитию кинематографа. Сейчас пластик вошел в нашу повседневную жизнь. Из него изготавливаются детские игрушки, всевозможные синтетические ткани, прорезиненную подошву для обуви, спортивный инвентарь, компьютерную технику.

Инженеры космической отрасли создали летательные ракеты и спутники на основе полипропилена. При лабораторных испытаниях оказалось, что низкая масса этого сырья без особых усилий помогает преодолеть притяжение Земли, и при больших температурных перепадах в агрессивной среде пластмасса не деформируется.

В быту

Изделия из высокомолекулярных соединений встречаются намного чаще, чем их натуральных компонентов. Этому способствуют высокие характеристики (прочность, гигиеничность, универсальность, эластичность) и низкая стоимость на продукцию.

Приведем несколько примеров тех вещей, которыми мы пользуемся каждый день:

  • • Предметы личной гигиены (расческа, зубная щетка и т.д.).
  • • Принадлежности для кухни.
  • • Одноразовая посуда.
  • • Пакеты для мусора и покупок.
  • • Пленка для запекания еды.
  • • Сантехнические составляющие.
  • • Бытовая химия.
  • • Части техники (телевизора, холодильника, пылесоса, микроволновки, миксера, утюга).
  • • Настольная лампа.
  • • Одежда (капроновые колготки, костюмы для рыбной ловли, спортивные куртки и комбинезоны) и обувь (резиновые сапоги, сланцы и калоши).

В строительной отрасли

Последние пятьдесят лет пластмасса вытеснила натуральные материалы (дерево, металл и бетон). Она стала использоваться при производстве:

  • • Отделочных материалов, предназначенных для обустройства потолка, стен и пола.
  • • Ограждающих конструкций и строительных сооружений. К ним относятся составная арматура, балки, поликарбонат, полибетон, основа оконных рам и межкомнатных дверей, стеклопластик.
  • • Пен для герметизации проемов и щелей, клея.
  • • Изделий водо и теплоснабжения, оборудований сантехнического профиля, вентиляционной системы и отопления.
  • • Тканей, предназначенных для теплоизоляции. Они могут продаваться в рулонах, в виде порошка или жидкими смесями.
  • • Наливных полов. При использовании такого материала поверхность становится гладкой и ровной. На ней исключено появление воздушных пузырьков, трещин и вмятин.
  • • Роликов и колес для складской гидравлической тележки. Большой ассортимент этих изделий можно найти на сайте торгово-производственной . Кроме этого, у них имеется продукция для мебели: заглушки и фурнитура. А для строителей – пластиковые отбойники.

В медицине

Более трех тысяч разновидностей изделий изготовляется для этой отрасли.

Приведем несколько примеров:

  • • Одноразовые шприцы.
  • • Хирургические инструменты.
  • • Материалы для стоматологии.
  • • Пакеты для хранения крови и плазмы.
  • • Лекарства, клеи для обработки швов, искусственные протезы и органы.
  • • Оборудование для хозяйственной деятельности (посуда для лабораторий, различный инвентарь, клеенка, хирургические бахилы).
  • Предметы оптики (оправа, линзы).

Виды изделий из полимеров и их применение в сельском хозяйстве

Тепличный бизнес невозможно представить без помещения, сделанного из полипропиленовой арматуры и покрытого поликарбонатом со стенкой толщиной в 1 см. Также для повышения урожайности всегда требуются различные ткани и пленки, предотвращающие появление сорняков.

Для полива используются трубы и шланги, которые намного превосходят по своим техническим характеристикам металлическую мелиоративную систему. Они удобны в монтаже, легкий вес помогает перевозить трубы без применения тяжелой техники, срок эксплуатации составляет около пятидесяти лет.

В пищевой промышленности

Главным условием создания станков для выпечки хлебной продукции, производства мясных, рыбных и овощных полуфабрикатов является соблюдение требований и правил санэпидемстанции. Антиадгезионное покрытие необходимо для бочек и контейнеров для хранения и перевозки зерновых и сыпучих продуктов.

На полках магазина вы встречаете продовольствие, запечатанное в пакеты и пленки, которые защищают от внешних загрязнителей и предохраняют от порчи. Раньше изделия изготавливались из пластмассы с низкомолекулярными веществами, которые имели множество недостатков. Основным из которых является выделение вредных частиц в окружающую среду. На сегодняшний день эта отрасль постоянно развивается, что привело к усовершенствованию химических, механических и физических качеств.

Мы подробно рассказали, что это такое, полимерная продукция, какие имеет свойства и характеристики, виды и область применения.

Термопласты и их сокращенные обозначения

  • АБС – привитой сополимер акрилонитрила, стирола с бутадиеновым или бутадиен-стирольным каучуком.
  • АЦ – ацетат целлюлозы.
  • ЛПЭНП – линейный полиэтилен низкой плотности.
  • МС – сополимер стирола с метилметакрилатом.
  • МСН – сополимер стирола с метилметакрилатом и акрилонитрилом.
  • ПАН – полиакрилонитрил.
  • ПА – полиамиды.
  • ПАК – полиамидокислота.
  • ПАР – полиарилаты.
  • ПАС – полиалкилсульфон.
  • ПБТ – полибутилентерефталат.
  • ПВА – поливинилацетат.
  • ПВС – поливиниловый спирт.
  • ПВФ, фторопласт-1 – поливинилфторид.
  • ПВХ – поливинилхлорид.
  • ПВДФ, фторопласт-2 – поливинилиденфторид.
  • ПВДХ – поливинилиденхлорид.
  • ПИ – полиимиды.
  • ПК – поликарбонаты.
  • ПММА – полиметилметакрилат.
  • ПО – полиолефины.
  • ПП – полипропилен.
  • ПС – полистирол.
  • ППС – пенополистирол.
  • ПСФ – полисульфон.
  • ПТП – пентапласт.
  • ПТФЭ, фторопласт-4, фторлон-4, тефлон – политетрафторэтилен
  • ПТФХЭ, фторопласт-3. фторлон-3– политрифторхлорэтилен.
  • ПУ – полиуретаны.
  • ПФ – полиформальдегид.
  • ПФО – полифениленоксид.
  • ПЭ – полиэтилен.
  • ПЭИ – полиэфиримид.
  • ПЭВП, ПЭНД, ПНД – полиэтилен высокой плотности (низкого давления).
  • ПЭНП, ПЭВД, ПВД – полиэтилен низкой плотности (высокого давления).
  • ПЭО – полиэтиленоксид.
  • ПЭСД – полиэтилен среднего давления.
  • ПЭТФ – полиэтилентерефталат.
  • САМ – сополимер стирола с α-метилстиролом.
  • САН – сополимер стирола с акрилонитрилом.
  • СТД  – сополимер триоксана с диоксоланом.
  • СФД – сополимер формальдегида с диоксаланом.
  • ТАЦ – триацетат целлюлозы.
  • ФН – фенилон.
  • ХПЭ  – хлорированный полиэтилен.
  • ХСПЭ – хлорсульфированный полиэтилен.
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: