Характеристики и свойства сплава авиационного алюминия

Рафинирование алюминия

Алюминий, извлекаемый из электролизных ванн, называют алюминием-сырцом. Он содержит металлические (Fe, Si, Cu, Zn и др.) и неметаллические примеси, а также газы (водо­род, кислород, азот, оксиды углерода, сернистый газ). Неметаллические примеси — это механически увлеченные час­тицы глинозема, электролит, частицы футеровки и др.

Для очистки от механически захваченных примесей, раст­воренных газов, а также от Na, Са и Мg алюминий подвер­гают хлорированию. Для этого в вакуум-ковш вводят трубку, через которую в течение 10—15 мин подают газообразный хлор, причем для увеличения поверхности соприкосновения газа с металлом на конце трубки крепят пористые керами­ческие пробки, обеспечивающие дробление струи газа на мелкие пузырьки. Хлор энергично реагирует с алюминием, образуя хлористый алюминий AlCl3. Пары хлористого алюми­ния поднимаются через слой металла и вместе с ними всплы­вают взвешенные неметаллические примеси, часть газов и образующиеся хлориды Na, Са, Мg и Н2.

Далее алюминий заливают в электрические печи-миксеры или в отражательные печи, где в течение 30—45 мин проис­ходит его остаивание. Цель этой операции — дополнительное очищение от неметаллических и газовых включений и усред­нение состава путем смешения алюминия из разных ванн. Затем алюминий разливают либо в чушки на конвейерных раз­ливочных машинах, либо на установках непрерывного литья в слитки для прокатки или волочения. Таким образом получают алюминий чистотой не менее 99,8 % Аl.

Алюминий более высокой степени чистоты в промышленном масштабе получают путем последующего электролитического рафинирования жидкого алюминия по так называемому трех­слойному методу. Электролизная ванна имеет стенки из маг­незита, угольную подину (анод) и подвешенные сверху графитированные катоды. На подину через боковое отверстие порциями заливают исходный алюминий, поддерживая здесь анодный слой определенной толщины; выше него располагает­ся слой электролита из фтористых и хлористых солей, а над электролитом — слой очищенного алюминия, который легче электролита; в этот слой погружены концы катодов.

Для того, чтобы рафинируемый алюминий находился внизу, его утяжеляют, формируя в анодном слое сплав алюминия с медью (в слое растворяют 30—40 % Сu). В процессе электро­лиза ионы Al3+перемещаются из анодного слоя через слой электролита в катодный слой и здесь разряжаются. Накапливающийся на поверхности ванны чистый катодный металл вычерпывают и разливают в слитки. Этим способом получают алюминий чистотой 99,95—99,99%. Расход электроэнергии равен ~ 18000 кВт • ч на 1 т алюминия. Более чистый алюминий получают методом зонной плавки или дистилляцией через субгалогениды.

Какие различают марки алюминия

Придание металлу определенных свойств, усиление его характеристик возможно за счет легирования его различными химическими элементами, такими как магний, медь, цинк, кремний, марганец.

Существуют разные марки алюминия, отвечающие определенным стандартам, к примеру, «АД0» по ГОСТу 4784-97. Во избежание путаницы классификация включает высокочастотные металлы.

Алюминий может быть следующих марок:

  1. Первичный («А5», «А95», «А7Е»).
  2. Технический («АД1», «АД000», «АДС»).
  3. Деформируемый («АМг2», «Д1»).
  4. Литейный («ВАЛ10М», «АК12пч»).
  5. Для раскисления стали («АВ86», «АВ97Ф»).

Помимо перечисленных марок алюминия, отдельно выделяют его соединения, с помощью которых создают сплавы с золотом, серебром, платиной, прочими драгоценными металлами. Такие соединения называют лигатурами.

Литейный алюминий

Литейные марки алюминия относятся к серии 1хх литейных сплавов по международной классификации алюминия и его сплавов. Хотя часто их называют сплавами (alloys), нет оснований относить их полноправным сплавам: они содержат не менее 99,00 % алюминия и формально не имеют легирующих элементов, однако, в отличие от марок первичного алюминия в них контролируют отношение содержания железа и кремния.

Эти марки-сплавы литейной серии 1хх применяются для отливки роторов электрических двигателей (таблица 6). Роторы обычно отливаются на машинах литья под высоким давлением, которые специально разработаны для этой цели. Типичный алюминиевый ротор показан на рисунке 1. Эти марки литейного алюминия серии 1хх применяются также в некоторых других случаях, которые не требуют сложных форм отливок.

Таблица 6 – “Роторные” марки литейного алюминия

Рисунок 1 – Типичный алюминиевый ротор электрического двигателя

В этих роторные “сплавах” установлены не только пределы чистоты алюминия, но и также отношение содержания железа и кремния. Это обеспечивает образование интерметаллических частиц, которые в меньшей степени, чем другие отрицательно влияют на литейные свойства этих “сплавов”, а также на их электрическую проводимость.

Поскольку нелегированный алюминий стоит дешевле, чем роторные сплавы, были попытки заменить их на марки первичного алюминия при изготовлении роторов. Например, слитки первичного алюминия Р1020 имеют ту же чистоту, как и “сплав” 170.2, но без контроля соотношения содержания железа и кремния, а также неконтролируемое содержание титана и ванадия. Опыт показал, что игнорирование этих различий ведет к разбросу характеристик электрической проводимости и низким литейным свойствам алюминия при отливке роторов .

  • Самый чистый «роторный» алюминий (170.1) является самым трудным для литья: он в самой большой степени подвергается усадочному растрескиванию.
  • Наоборот, наименее чистый алюминий 100.1 льется намного легче при минимальном растрескивании .
  • Более чистые марки алюминия, например, 99,80% и 99,85 %, еще более склонны к растрескиванию при их литье, чем марка алюминия 170.1 .

Маркировка алюминия и алюминиевых сплавов

Чистый алюминий маркируется в зависимости от содержания в нем примесей, различается;

  • А999 — алюминий особой чистоты;
  • А995, А99, А97, А95 — алюминий высокой чистоты;
  • А85, А8, … — алюминий технической чистоты.

        Алюминий особой чистоты применяется в производстве полупроводниковых приборов и для исследовательской работы.

        Алюминий высокой чистоты применяется для плакирования деталей электро- и радиооборудования.

        Алюминий технической чистоты используется для приготовления алюминиевых сплавов, изготовления проводов, прокладок

      Технический  алюминий  обозначается    буквами  АД   (алюминий деформируемый), в случае использования более чистого алюминия ставится цифра  1. Сочетание букв АМг и АМц означает сплав алюминия (А) с магнием (Mг) и марганцем (Мц). У сплавов алюминия с магнием цифра показывает процентное содержание магния. Так, например, сплавы марок АМгЗ, АМг5, АМг6 содержат соответственно 3, 5 и 6% магния.

Сплавы в виде полуфабриката обозначаются буквами, которые ставятся после маркировки сплава: А — означает, что сплав повышенного качества, из лучшего алюминия; М — мягкий, отожженный; П — полунагартованный (степень обжатия 40%): Н — нагартованный (степень обжатия 80%). Так, отожженные сплавы обозначаются АДМ, АМцАМ, полунагартованные — АМгАП и нагартованиые — АД1Н. АМгЗН.

       Дюралюминий обозначают буквой Д и цифрой, показывающей условный номер сплава, например сплав Д1, Д16, Д18, Д20. Некоторые сплавы, разработанные и последнее время, с маркировкой В65 ВД17 (дюралюминий, покрытый тонким слоем чистого алюминия для придания сплаву коррозионной стойкости) называют алькледом (Альклед это термин, торговая марка)

       Высокопрочный сплав алюминия с цинком и магнием обозначается В94, В95, В96 (вторая цифра указывает номер сплава).

       Состояние полуфабрикатов высокопрочных сплавов и характер плакировки также имеют буквенно-цифровую маркировку: М— мягкий, отожженный; Т— термически обработанный, закаленный и естественно состаренный. T1- термически обработанный, закаленный и искусственно состаренный; Н — нагартованный (нагартовка листов дюралюминия около 5—7%, а сплавов В95—3%); H1—усиленно нагартованный (нагартовка листов около 20%); В — повышенное качество выкатки закаленных и состаренных листов; О — повышенное качество выкатки отожженных листов; Б — листы без плакировки или с технологической плакировкой; УП — утолщенная плакировка (8% на сторону); ГК — горячекатаные листы, плиты; ТПП — закаленные и состаренные профили повышенной прочности (для Д16).

        Геометрическая маркировка. В конце маркировки для листового материала указывается его толщина в миллиметрах, а для профилей — условное цифровое обозначение формы сечения и размеров. Например, маркировка Д16АТНВЛ2,5 означает, что плакированный листовой дюралюминий Д16 — повышенного качества, термически обработан, нагартован и имеет повышенное качество выкатки. Толщина листа 2,5 мм.

       Заклепочные сплавы. Сплавы, идущие на изготовление заклепок, имеют в маркировке букву П (сплав для проволоки), например ДЗП, Д16П.

       Алюминиевые сплавы для ковки и горячей штамповки обозначаются буквами АК (алюминиевые ковочные) и цифрой — условным номером сплава, например сплавы АК4, АК4-1, АК6, АК6-1, АК8. Дополнительная цифра -1  показывает, что сплав является близкой модификацией сплава без цифры.

        Разработанные в последнее время ковочные сплавы имеют нестандартную маркировку, например сплав Д20.

       Литейные алюминиевые сплавы обозначаются буквами АЛ (алюминиевые литейные) и цифрой, показывающей условный номер сплава, например сплав АЛ2, АЛ4. АЛ9 и т. д. Исключение составляют новые марки литейных сплавов ВИ-11-3, В300, В14-А.

        Силумины. В зависимости от состава все алюминиевые литейные сплавы делятся на силумины, представляющие собой сплавы алюминия и кремния (АЛ2. АЛ4, АЛ9), и легированные силумины — сплавы алюминия и кремния с добавкой меди (АЛЗ, АЛ5. АЛ9) или магния (АЛ 13, ВИ-11-3). Применяются также альтмаг — сплав алюминия и магния (АЛ8)—и сплавы алюминия с медью (АЛ7, АЛ 19).

       Режимы термообработки. Для литейных алюминиевых и магниевых сплавов применяют следующие обозначения режимов термической обработки: T1— старение; Т2 — отжиг; Т4 — закалка; Т5 — закалка и частичное старение; Т6 —закалка и полное старение до наибольшей твердости; Т7 — закалка и стабилизирующий отпуск; Т8 — закалка и смягчающий отпуск. Например, обозначение АЛ4Т6 показывает, Что сплав АЛ4 подвергается термической обработке по режиму Т6, состоящему из закалки и полного старения.

Маркировка алюминиевых сплавов

При определении марки алюминиевых сплавов можно столкнуться с определенными сложностями. Маркировка выполняется таким образом, чтобы вопросов при уточнении соединения не возникало. Составы имеют определенное буквенно-цифровое обозначение.

Особенности маркировки заключаются в следующем:

  • в начале стоят одна или несколько букв, указывающие на состав соединения;
  • маркировки включают в себя цифровой порядковый номер;
  • заканчиваться маркировка может также буквой, обозначающей особенности обработки материала (например, термической).

Ознакомимся с правилами маркировки на примере сплава Д17П. Первая буква Д обозначает состав сплава – дюралюминий. В составе всех дюралюминиев присутствуют определенные химические элементы, различающиеся по количественному содержанию. Порядковый номер 17 указывает на конкретный материал, обладающий определенными свойствами. Буква П в конце маркировки используется для обозначения способа обработки полунагартованного соединения, получаемого под давлением без предварительного нагрева металла, соответственно, прочностные характеристики будут составлять половину от максимально возможных.

Маркировка алюминиевых сплавов производится по ГОСТу 4784-97, определяющему основные требования к обозначению соединений.

Определение. Исторический экскурс

Началом истории авиационных алюминиевых сплавов считается 1909 год. Немецкий инженер-металлург Альфред Вильм опытным путем установил, если сплав алюминия с незначительным добавлением меди, марганца и магния после закалки при температуре 500 °C и резкого охлаждения выдержать при температуре 20-25 градусов в течение 4-5 суток, он поэтапно становится тверже и прочнее, не теряя при этом пластичности. Процедура получила название «старение» или «возмужание». В процессе такой закалки атомы меди заполняют множество мельчайших зон на границах зерен. Диаметр атома меди меньше, чем у алюминия, потому появляется напряжение сжатия, вследствие чего повышается прочность материала.

Впервые сплав был освоен на немецких заводах Dürener Metallwerken и получил торговую марку Dural, откуда и произошло название «дуралюмин». Впоследствии, американские металловеды Р. Арчер и В. Джафрис усовершенствовали состав, изменив процентное соотношение, в основном магния. Новый сплав получил название 2024, который в различных модификациях широко применяется и сейчас, а все семейство сплавов — «Авиаль». Название «авиационный алюминий» этот сплав получил практически сразу после открытия, поскольку полностью заменил дерево и метал в конструкциях летательных аппаратов.

Механические свойства деформируемых латуней

E = 105…115 ГПа.

Тип латуни Марка латуни Состояние Предел прочности σв, МПа Относительное удлинение δ, % Твёрдость HB, МПа
Простая Л96, Л90 Мягкое состояние 240-260 50 HB 550
Простая Л96, Л90 Твёрдое состояние 450-470 2,5 HB 1350
Алюминиевая ЛАЖ60-1-1 Мягкое состояние 450 50 HB 550
Алюминиевая ЛАЖ60-1-1 Твёрдое состояние 700 8 HB 1700
Оловянистая ЛО90-1 Мягкое состояние 280 45 HB 570
Оловянистая ЛО90-1 Твёрдое состояние 520 4,5 HB 1450
Свинцовая ЛС74-3, ЛС64-2, ЛС63-3 Мягкое состояние 300-400 40-60 HB 500-700
Свинцовая ЛС74-3, ЛС64-2, ЛС63-3 Твёрдое состояние 550-700 2-6 HB 1000-1200

Виды и свойства алюминиевых сплавов

Алюминиево-магниевые сплавы

Эти пластичные сплавы обладают хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности.

В алюминиево-магниевых сплавах содержится до 6% магния. Чем выше его содержание, тем прочнее сплав. Повышение концентрации магния на каждый процент увеличивает предел прочности примерно на 30 МПа, а предел текучести — примерно на 20 МПа. При подобных условиях уменьшается относительное удлинение, но незначительно, оставаясь в пределах 30–35%. Однако при содержании магния свыше 6% механическая структура сплава в нагартованном состоянии приобретает нестабильных характер, ухудшается коррозийная стойкость.

Для улучшения прочности в сплавы добавляют хром, марганец, титан, кремний или ванадий. Примеси меди и железа, напротив, негативно влияют на сплавы этого вида — снижают свариваемость и коррозионную стойкость.

Алюминиево-марганцевые сплавы

Это прочные и пластичные сплавы, которые обладают высоким уровнем коррозионной стойкости и хорошей свариваемостью.

Для получения мелкозернистой структуры сплавы этого вида легируют титаном, а для сохранения стабильности в нагартованном состоянии добавляют марганец. Основные примеси в сплавах вида Al-Mn — железо и кремний.

Сплавы алюминий-медь-кремний

Сплавы этого вида также называют алькусинами. Из-за высоких технических свойств их используют во втулочных подшипниках, а также при изготовлении блоков цилиндров. Обладают высокой твердостью поверхности, поэтому плохо прирабатываются.

Алюминиево-медные сплавы

Механические свойства сплавов этого вида в термоупрочненном состоянии порой превышают даже механические свойства некоторых низкоуглеродистых сталей. Их главный недостаток — невысокая коррозионная стойкость, потому эти сплавы обрабатывают поверхностными защитными покрытиями.

Алюминиево-медные сплавы легируют марганцем, кремнием, железом и магнием. Последний оказывает наибольшее влияние на свойства сплава: легирование магнием значительно повышает предел текучести и прочности. Добавление железа и никеля в сплав повышает его жаропрочность, кремния — способность к искусственному старению.

Алюминий-кремниевые сплавы

Сплавы этого вида иначе называют силуминами. Некоторые из них модифицируют добавками натрия или лития: наличие буквально 0,05% лития или 0,1% натрия увеличивает содержание кремния в эвтектическом сплаве с 12% до 14%. Сплавы применяются для декоративного литья, изготовления корпусов механизмов и элементов бытовых приборов, поскольку обладают хорошими литейными свойствами.

Сплавы алюминий-цинк-магний

Прочные и хорошо обрабатываемые. Типичный пример высокопрочного сплава этого вида — В95. Подобная прочность объясняется высокой растворимостью цинка и магния при температуре плавления до 70% и до 17,4% соответственно. При охлаждении растворимость элементов заметно снижается.

Основной недостаток этих сплавов — низкую коррозионную стойкость во время механического напряжения — исправляет легирование медью.

Авиаль

Авиаль — группа сплавов системы алюминий-магний-кремний с незначительными добавлениями иных элементов (Mn, Cr, Cu). Название образовано от сокращения словосочетания «авиационный алюминий».

Применять авиаль стали после открытия Д. Хансоном и М. Гейлером эффекта искусственного состаривания и термического упрочнения этой группы сплавов за счет выделения Mg2Si.

Эти сплавы отличаются высокой пластичностью и удовлетворительной коррозионной стойкостью. Из авиаля изготавливают кованые и штампованные детали сложной формы. Например, лонжероны лопастей винтов вертолетов. Для повышения коррозионной стойкости содержание меди иногда снижают до 0,1%.

Также сплав активно используют для замены нержавеющей стали в корпусах мобильных телефонов.

Классификация алюминия по степени чистоты и его механические свойства

В последующие годы благодаря сравнительной простоте получения и привлекательным свойствам опубликовано много работ о свойствах алюминия. Чистый алюминий нашёл широкое применение в основном в электронике — от электролитических конденсаторов до вершины электронной инженерии — микропроцессоров; в криоэлектронике, криомагнетике. Более новыми способами получения чистого алюминия являются метод зонной очистки, кристаллизация из амальгам (сплавов алюминия со ртутью) и выделение из щёлочных растворов. Степень чистоты алюминия контролируется величиной электросопротивления при низких температурах. В настоящее время используется следующая классификация алюминия по степени чистоты:

Обозначение

Содержание алюминия по массе,%
Алюминий промышленной чистоты 99,5 — 99,79
Высокочистый алюминий 99,80 — 99,949
Сверхчистый алюминий 99,950 — 99,9959
Особо чистый алюминий 99,9960 — 99,9990
Ультрачистый алюминий свыше 99,9990

Механические свойства алюминия при комнатной температуре:

Чистота, %
Предел текучести d

0,2 , Мпа

Предел прочности, d

в, МПа

Относительное удлинение d,% (на базе 50 мм)

99,99
10
45
50

99,8
20
60
45

99,6
30
70
43

Транспорт

Алюминий в легковых автомобилях

Средняя масса алюминия в легковых автомобилях в Европе в 2006 составляла около 118 кг и продолжала увеличиваться. Его доля в различных компонентах и деталях автомобилей составляет (в килограммах на один автомобиль):

  • блоки цилиндров двигателей: 40,3
  • трансмиссия: 16,3
  • шасси, подвеска и управление: 12,5
  • колеса: 17,7
  • теплообменник: 12,3
  • тормоза: 3,7
  • кузов: 6,8
  • тепловые экраны: 1,4
  • бамперы: 2,8
  • другие компоненты: 3,9.

Алюминиевый блок цилиндров автомобиля

Алюминиевый автомобильный колесный диск

Применение алюминия для изготовления автомобильных деталей обусловлено следующими его свойствами:

  • низкая плотность;
  • прочность;
  • жесткость;
  • вязкость;
  • стоимость;
  • коррозионная стойкость.

Алюминиевая рама автомобиля

Алюминиевые сплавы для грузовых автомобилей

Алюминиевые сплавы для автомобильных цистерн

Производство алюминиевых автомобильных цистерн

Алюминиевые сплавы для кузовов самосвалов

Производство алюминиевых кузовов самосвалов

Алюминиевые сплавы для автомобильных фургонов

Алюминиевые сплавы для шасси грузовых автомобилей

Алюминий в вагоностроении

Конструкция высокоскоростного поезда Intercity Express из прессованных алюминиевых профилей – Германия, 1992

Алюминиевый вагон городского рельсового транспорта

Грузовой алюминиевый вагон для перевозки угля

Алюминевый патрульный катер

Круизный лайнер с алюминиевой надстройкой

Алюминиевая яхта-катамаран

Алюминиевые сплавы для самолетов

Первый самолет братьев Райт в 1903 году был в основном деревянным с алюминиевым двигателем.

Среди алюминиевых сплавов, которые применяют в самолетостроении доминируют высокопрочные деформируемые сплавы, такие как, сплав 2024 (содержащий медь и магний) и сплав 7075 (содержащий магний, цинк и немного меди). Большинство алюминиевых сплавов, которые применяются в самолетостроении, являются несвариваемыми и их соединяют в основном заклепками.

На рисунках ниже показано применение сплавов серии 2ххх для изготовления фюзеляжа самолета и сплавов серии 7ххх – для крыльев.

(a)

(б)

Применение алюминиевых сплавов в самолетостроении: а – сплавы серии 7ххх для фюзеляжа и б – сплавы серии 2ххх для крыльев .

Аэробус А380

Основные требования к алюминиевым сплавам в аэрокосмической промышленности:

  • низкая плотность;
  • высокая прочность;
  • точность механической обработки;
  • коррозионная стойкость;
  • стоимость.

Виды и свойства алюминиевых сплавов

Алюминиево-магниевые сплавы

Эти пластичные сплавы обладают хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности.

В алюминиево-магниевых сплавах содержится до 6% магния. Чем выше его содержание, тем прочнее сплав. Повышение концентрации магния на каждый процент увеличивает предел прочности примерно на 30 МПа, а предел текучести — примерно на 20 МПа. При подобных условиях уменьшается относительное удлинение, но незначительно, оставаясь в пределах 30–35%. Однако при содержании магния свыше 6% механическая структура сплава в нагартованном состоянии приобретает нестабильных характер, ухудшается коррозийная стойкость.

Для улучшения прочности в сплавы добавляют хром, марганец, титан, кремний или ванадий. Примеси меди и железа, напротив, негативно влияют на сплавы этого вида — снижают свариваемость и коррозионную стойкость.

Алюминиево-марганцевые сплавы

Это прочные и пластичные сплавы, которые обладают высоким уровнем коррозионной стойкости и хорошей свариваемостью.

Для получения мелкозернистой структуры сплавы этого вида легируют титаном, а для сохранения стабильности в нагартованном состоянии добавляют марганец. Основные примеси в сплавах вида Al-Mn — железо и кремний.

Сплавы алюминий-медь-кремний

Сплавы этого вида также называют алькусинами. Из-за высоких технических свойств их используют во втулочных подшипниках, а также при изготовлении блоков цилиндров. Обладают высокой твердостью поверхности, поэтому плохо прирабатываются.

Алюминиево-медные сплавы

Механические свойства сплавов этого вида в термоупрочненном состоянии порой превышают даже механические свойства некоторых низкоуглеродистых сталей. Их главный недостаток — невысокая коррозионная стойкость, потому эти сплавы обрабатывают поверхностными защитными покрытиями.

Алюминиево-медные сплавы легируют марганцем, кремнием, железом и магнием. Последний оказывает наибольшее влияние на свойства сплава: легирование магнием значительно повышает предел текучести и прочности. Добавление железа и никеля в сплав повышает его жаропрочность, кремния — способность к искусственному старению.

Алюминий-кремниевые сплавы

Сплавы этого вида иначе называют силуминами. Некоторые из них модифицируют добавками натрия или лития: наличие буквально 0,05% лития или 0,1% натрия увеличивает содержание кремния в эвтектическом сплаве с 12% до 14%. Сплавы применяются для декоративного литья, изготовления корпусов механизмов и элементов бытовых приборов, поскольку обладают хорошими литейными свойствами.

Сплавы алюминий-цинк-магний

Прочные и хорошо обрабатываемые. Типичный пример высокопрочного сплава этого вида — В95. Подобная прочность объясняется высокой растворимостью цинка и магния при температуре плавления до 70% и до 17,4% соответственно. При охлаждении растворимость элементов заметно снижается.

Основной недостаток этих сплавов — низкую коррозионную стойкость во время механического напряжения — исправляет легирование медью.

Авиаль

Авиаль — группа сплавов системы алюминий-магний-кремний с незначительными добавлениями иных элементов (Mn, Cr, Cu). Название образовано от сокращения словосочетания «авиационный алюминий».

Применять авиаль стали после открытия Д. Хансоном и М. Гейлером эффекта искусственного состаривания и термического упрочнения этой группы сплавов за счет выделения Mg2Si.

Эти сплавы отличаются высокой пластичностью и удовлетворительной коррозионной стойкостью. Из авиаля изготавливают кованые и штампованные детали сложной формы. Например, лонжероны лопастей винтов вертолетов. Для повышения коррозионной стойкости содержание меди иногда снижают до 0,1%.

Также сплав активно используют для замены нержавеющей стали в корпусах мобильных телефонов.

Виды алюминиевых сплавов

Основой для создания алюминия и его сплавов являются несколько видов металлической руды:

  • литейная;
  • первичная;
  • деформируемая;
  • техническая;
  • антифрикционная.

В соответствии со способом использования вещества разделяют на литейные и деформируемые. И если первые прекрасно заполняют собой формы, применяемые для отлива, то вторые имеют высокую пластичность, появляющуюся уже после термической обработки.

Пластичность вещества говорит о его стойкости к коррозии и улучшенной свариваемости. Имеется прямая связь между количеством меди в сплаве алюминия и его прочностью. Легирующее вещество в количестве 6 %, добавляемое в сплав, позволяет увеличить стойкость к механическим воздействиям на 30 МПа, а текучесть на 20 МПа.

При этом происходит снижение показателя относительного удлинения, который, впрочем, не выходит за пределы 35 %. Для сохранения необходимых показателей стойкости к коррозии нужно следить за тем, чтобы количество магния не было более 6 %. В противном случае структура сплава будет нестабильной.

Для улучшения характеристик сплава в него добавляют:

  • хром;
  • кремний;
  • марганец;
  • ванадий;
  • титан.

Если в соединение добавить железо и медь, то это плохо отразится на его состоянии: ухудшатся показатели устойчивости к коррозии и свариваемости.

Пластичность будет возрастать с добавлением марганца. Кроме того, он будет делать вещество более стабильным. А мелкозернистой структура станет после легирования титаном. Основными примесями марганцевых соединений являются железо и кремний.

Рекомендовано к прочтению

  • Резка меди лазером: преимущества и недостатки технологии
  • Виды резки металла: промышленное применение
  • Металлообработка по чертежам: удобно и выгодно

Кремний, медь и алюминий добавляются при изготовлении блоков цилиндров, а также втулочных подшипников. Поверхность получается достаточно твердой, но приработка будет требовать значительных усилий.

Термическая стойкость возрастает в результате легирования медью. Она повышается даже у низкоуглеродистой стали. Однако стойкость к коррозии у такого материала низкая, он требует обязательной обработки, а также полимеризации.

Модификация алюминиево-медного сплава происходит при добавлении:

  • магния;
  • марганца;
  • кремния;
  • железа.

Прочность материала значительно повышается при добавлении в его состав магния, который также придает ему текучесть. Термостойкость возрастает при добавке железа и никеля. В результате происходит стимуляция искусственного старения сплава.

Силумин получают посредством добавления кремния. Натрий и никель в небольшом количестве помогают повысить качественные характеристики сплава. Применяются такие материалы в основном для производства различных деталей и корпусов для бытовой техники, а также декоративного литья, поскольку имеют прекрасные литейные характеристики.

Стойкость к механическим воздействиям материалу придают удобные в обработке цинк, алюминий и магний. Это достигается благодаря магнию и цинку, имеющим хорошую растворимость. Правда, понижение температуры способно заметно снизить свойства сплава. Кроме того, он не устойчив к ржавчине. Этот недостаток исправляется легированием медью.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: