Понятия, связанные с удельным сопротивлением
Величина, противоположная удельному сопротивлению, носит наименование удельной проводимости или электропроводности. Обычное электрическое сопротивление свойственно лишь проводнику, а удельное электрическое сопротивление характерно только для того или иного вещества.
Как правило, эта величина рассчитывается для проводника, имеющего однородную структуру. Для определения электрического сопротивления однородных проводников используется формула:
Физический смысл этой величины заключается в определенном сопротивлении однородного проводника с определенной единичной длиной и площадью поперечного сечения. Единицей измерения служит единица системы СИ Ом•м или внесистемная единица Ом•мм2/м. Последняя единица означает, что проводник из однородного вещества, длиной 1 м, имеющий площадь поперечного сечения 1 мм2, будет иметь сопротивление в 1 Ом. Таким образом, удельное сопротивление любого вещества можно вычислить, используя участок электрической цепи, длиной 1 м, поперечное сечение которого будет составлять 1 мм2.
Понятия и значение сопротивления
Электрическое сопротивление материалов широко используется и учитывается в электротехнике. Данная величина позволяет установить основные параметры проводов и кабелей, особенно при скрытом способе их прокладки. В первую очередь устанавливается точная длина проложенной линии и материал, использованный для производства провода. Вычислив первоначальные данные, вполне возможно определить диаметр и сечение измеряемого кабеля.
По сравнению с обычной электрической проводкой, в электронике параметрам сопротивления придается решающее значение. Оно рассматривается и сопоставляется в совокупности с другими показателями, присутствующими в электронных схемах. В этих случаях неправильно подобранное сопротивление провода, может вызвать сбой в работе всех элементов системы. Такое может произойти, если для подключения к блоку питания компьютера воспользоваться слишком тонким проводом. Произойдет незначительное снижение напряжения в проводнике, что вызовет некорректную работу компьютера.
Сопротивление в медном проводе зависит от многих факторов, и в первую очередь от физических свойств самого материала. Кроме того, учитывается диаметр или сечение проводника, определяемые по формуле или специальной таблице.
Таблица
На сопротивление медного проводника оказывают влияние несколько дополнительных физических величин. Прежде всего должна учитываться температура окружающей среды. Всем известно, что при повышении температуры проводника, наблюдается рост его сопротивления. Одновременно с этим происходит снижение силы тока из-за обратно пропорциональной зависимости обеих величин. В первую очередь это касается металлов с положительным температурным коэффициентом. Примером отрицательного коэффициента является вольфрамовый сплав, применяющийся в лампах накаливания. В этом сплаве сила тока не снижается даже при очень высоком нагреве.
Сопротивление проводов
Электрическое сопротивление является основной характеристикой проводниковых материалов. В зависимости от области применения проводника величина его сопротивления может играть как положительную, так и отрицательную роль в функционировании электротехнической системы. Также, особенности применения проводника могут вызывать необходимость учёта дополнительных характеристик, влиянием которых в конкретном случае нельзя пренебрегать.
Природа сопротивления
Проводниками являются чистые металлы и их сплавы. В металле, фиксированные в единую «прочную» структуру атомы, обладают свободными электронами (так называемый «электронный газ»). Именно эти частицы в данном случае являются носителями заряда. Электроны находятся в постоянном беспорядочном движении от одного атома к другому. При появлении электрического поля (подключении к концам металла источника напряжения) движение электронов в проводнике становится упорядоченным. Движущиеся электроны встречают на своём пути препятствия, вызванные особенностями молекулярной структуры проводника. При столкновении со структурой носители заряда теряют свою энергию, отдавая её проводнику (нагревают его). Чем больше препятствий проводящая структура создаёт носителям заряда, тем выше сопротивление.
При увеличении поперечного сечения проводящей структуры для одного количества электронов «канал пропускания» станет шире, сопротивление уменьшится. Соответственно, при увеличении длины провода таких препятствий будет больше и сопротивление увеличится.
Таким образом, в базовую формулу для вычисления сопротивления входит длина провода, площадь поперечного сечения и некий коэффициент, связывающий эти размерные характеристики с электрическими величинами напряжения и тока (1). Этот коэффициент называют удельным сопротивлением. R= r*L/S (1)
Удельное сопротивление
Удельное сопротивление неизменно и является свойством вещества, из которого изготовлен проводник. Единицы измерения r — ом*м. Часто величину удельного сопротивления приводят в ом*мм кв./м. Это связанно с тем, что величина сечения наиболее часто применяемых кабелей является относительно малой и измеряется в мм кв. Приведём простой пример.
Задача №1. Длина медного провода L = 20 м, сечение S = 1.5 мм. кв. Рассчитать сопротивление провода. Решение: удельное сопротивление медного провода r = 0.018 ом*мм. кв./м. Подставляя значения в формулу (1) получим R=0.24 ома. Вычисляя сопротивление системы питания сопротивление одного провода нужно умножить на количество проводов. Если вместо меди использовать алюминий с более высоким удельным сопротивлением (r = 0.028 ом*мм. кв./м), то сопротивление проводов соответственно возрастёт. Для вышеприведенного примера сопротивление будет равно R = 0.373 ома (на 55 % больше). Медь и алюминий – основные материалы для проводов. Существуют металлы с меньшим удельным сопротивлением, чем удельное сопротивление меди, например серебро. Однако его применение ограничено из-за очевидной дороговизны. В таблице ниже приведены сопротивления и другие основные характеристики проводниковых материалов.
Таблица – основные характеристики проводников
electry.ru
Сравнение проводимости разных видов стали
Характеристики стали зависят от ее состава и температуры:
- Для углеродистых сплавов сопротивление довольно низкое: оно составляет 0,13-0,2 мкОм/м. Чем выше температура, тем больше значение;
- Низколегированные сплавы имеют более высокое сопротивление — 0,2-0,43 мкОм/м;
- Высоколегированные стали отличаются высоким сопротивлением — 0,3-0,86 мкОм/м;
- Благодаря высокому содержанию хрома сопротивление хромистых нержавеющих сплавов равняется 0,5-0,6 мкОм/м;
- Хромоникелевые аустенитные стали являются нержавеющими и благодаря никелю имеют высокую сопротивляемость — 0,7-0,9 мкОм/м.
Из стали часто делают оцинкованную оплетку
Медь стоит на втором месте по степени электропроводимости: она отлично пропускает электрический ток и повсеместно используется при изготовлении проводов. Не реже применяют и алюминий: он слабее меди, но дешевле и легче.
Индуктивное сопротивление
Формулы для расчёта проводимости проводов справедливы только в сети постоянного тока или в прямых проводниках при низкой частоте. В катушках и в высокочастотных сетях появляется индуктивное сопротивление, во много раз превышающее обычное. Кроме того, ток высокой частоты распространяется только по поверхности провода. Поэтому его иногда покрывают тонким слоем серебра или используют литцендрат.
Справка. Литцендрат – это многожильный провод, каждая жила в котором изолирована от остальных. Это делается для увеличения поверхности и проводимости в сетях высокой частоты.
Удельное сопротивление меди, гибкость, относительно невысокая цена и механическая прочность делают этот металл, вместе с алюминием, самым распространенным материалом для изготовления проводов.
Алюминий
Характерными свойствами чистого алюминия является его малый удельный вес, низкая температура плавления, высокая тепловая и электрическая проводимость, высокая пластичность, очень большая скрытая теплота плавления и прочная, хотя и очень тонкая пленка окиси, покрывающая поверхность металла и защищающая его от проникновения кислорода внутрь.
Малая плотность делает алюминий основой легких конструкционных материалов; большая пластичность позволяет применять к алюминию все виды обработки давлением и получать из него листы, прутки, проволоку, трубы, тончайшую фольгу, штампованные детали с глубокой вытяжкой и др.
Хорошая электрическая проводимость обеспечивает широкое применение алюминия в электротехнике. Так как плотность алюминия в 3,3 раза ниже, чем у меди, а удельное сопротивление лишь в 1,7 раза выше, чем у меди, то алюминий, на единицу массы имеет вдвое более высокую проводимость, чем медь.
Прочная пленка окиси быстро покрывает свежий срез металла уже при комнатной температуре, обеспечивая алюминию высокую устойчивость против коррозии в атмосферных условиях.
Сернистый газ, сероводород, аммиак и другие газы, находящиеся в воздухе промышленных районов, не оказывают заметного влияния на скорость коррозии алюминия. Действие водяного пара на алюминий также незначительно. В контакте с большинством металлов и сплавов, являющихся благородными по электрохимическому ряду потенциалов, алюминий служит анодом и, следовательно, коррозия его в электролитах будет прогрессировать.
Чтобы избежать образования гальванопар во влажной атмосфере, место соединения алюминия с другими металлами герметизируется лакировкой или другим путем.
Длительные испытания проводов из алюминия показали, что они в отношении устойчивости против коррозии не уступают медным.
Таблица 1. Основные характеристики проводниковых материалов
Материал |
Плотность, кг/м3·103 |
Температура плавления, °C |
Удельное электрическое сопротивление при 20 °C, Ом×м·10–6 |
Средний температурный коэффициент сопротивления от 0 до 100 °C, 1/град |
Примечание |
Алюминий |
2,7 |
660 |
0,026—0,028 |
4·10–3 |
Провода, кабели, шины, проводники короткозамкнутых роторов, корпуса и подшипниковые щиты малых электромашин |
Бронза |
8,3—8,9 |
885—1050 |
0,021—0,052 |
4·10–3 |
Кадмиевая бронза — контакты, фосфористая — пружины |
Латунь |
8,4—8,7 |
900—960 |
0,03—0,08 |
2·10–3 |
Контакты, зажимы |
Медь |
8,7—8,9 |
1080 |
0,0175—0,0182 |
3·10–2 |
Провода, кабели, шины |
Олово |
7,3 |
232 |
0,114—0,120 |
4,4·10–3 |
Припои для лужения и пайки в сплаве со свинцом |
Свинец |
11,34 |
327 |
0,217—0,222 |
3,8·10–3 |
Защитная обложка кабелей, вставки предохранителей, пластины аккумуляторов, припои в сплаве с оловом для лужения и пайки |
Серебро |
10,5 |
960 |
0,0160—0,0162 |
3,6·10–3 |
Контакты электроприборов и аппаратов |
Сталь |
7,8 |
1400 |
0,103—0,137 |
62·10–2 |
Шины заземления |
Таблица 2. Сопротивление металлов или сплавов по сравнению с медью
Металл или сплав |
Сопротивление по сравнению с медью |
Металл или сплав |
Сопротивление по сравнению с медью |
Серебро |
0,9 |
Олово |
8,5 |
Медь |
1,0 |
Сталь |
12 |
Хром |
1,6 |
Свинец |
13 |
Алюминий |
1,67 |
Нейзильбер |
17 |
Магний |
2,8 |
Никелин |
25 |
Молибден |
2,9 |
Манганин |
26 |
Вольфрам |
3,6 |
Реотан |
28 |
Цинк |
3,7 |
Константан |
29 |
Латунь |
4,5 |
Чугун |
30 |
Платина |
5,5 |
Ртуть |
60 |
Кобальт |
6,0 |
Нихром |
60 |
Никель |
6,5 |
Уголь |
15000 |
Железо |
7,7 |
Таблица 3. Изменение сопротивления медных проводов при нагревании (сопротивление при 15 °C принято за единицу)
Температура, °C (десятки) |
Температура, °C (единицы) |
|||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
||
0,940 |
0,944 |
0,948 |
0,952 |
0,956 |
0,960 |
0,964 |
0,968 |
0,972 |
0,976 |
|
10 |
0,980 |
0,984 |
0,988 |
0,992 |
0,996 |
1,000 |
1,004 |
1,008 |
1,012 |
1,016 |
20 |
1,020 |
1,024 |
1,028 |
1,032 |
1,036 |
1,040 |
1,044 |
1,048 |
1,052 |
1,056 |
30 |
1,060 |
1,064 |
1,068 |
1,072 |
1,076 |
1,080 |
1,084 |
1,088 |
1,092 |
1,096 |
40 |
1,100 |
1,104 |
1,108 |
1,112 |
1,116 |
1,120 |
1,124 |
1,128 |
1,132 |
1,136 |
50 |
1,140 |
1,144 |
1,148 |
1,152 |
1,156 |
1,160 |
1,164 |
1,168 |
1,172 |
1,176 |
60 |
1,180 |
1,184 |
1,188 |
1,192 |
1,196 |
1,200 |
1,204 |
1,208 |
1,212 |
1,216 |
70 |
1,220 |
1,224 |
1,228 |
1,232 |
1,236 |
1,240 |
1,244 |
1,248 |
1,252 |
1,256 |
80 |
1,260 |
1,264 |
1,268 |
1,272 |
1,276 |
1,280 |
1,284 |
1,288 |
1,292 |
1,296 |
90 |
1,300 |
1,304 |
1,308 |
1,312 |
1,316 |
1,320 |
1,324 |
1,328 |
1,332 |
1,336 |
100 |
1,340 |
1,344 |
1,348 |
1,352 |
1,356 |
1,360 |
1,364 |
1,368 |
1,372 |
1,376 |
Примечание. Таблица служит для пересчета сопротивлений при температурах нагрева. Например, для подсчета сопротивления при температуре 44 °C надо по вертикали взять температуру 40 °C и по горизонтали поправку на 4 °C: получается изменение сопротивления в 1,116 раза. |
Удельное сопротивление меди и алюминия для расчетов
Несмотря на то, что данная тема может показаться совсем банальной, в ней я отвечу на один очень важный вопрос по расчету потери напряжения и расчету токов короткого замыкания. Думаю, для многих из вас это станет таким же открытием, как и для меня.
Недавно я изучал один очень интересный ГОСТ:
ГОСТ Р 50571.5.52-2011 Электроустановки низковольтные. Часть 5-52. Выбор и монтаж электрооборудования. Электропроводки.
Советую почитать данный документ, т.к. там много чего полезного.
В этом документе приводится формула для расчета потери напряжения и указано:
р — удельное сопротивление проводников в нормальных условиях, взятое равным удельному сопротивлению при температуре в нормальных условиях, то есть 1,25 удельного сопротивления при 20 °С, или 0,0225 Ом · мм2/м для меди и 0,036 Ом · мм2/м для алюминия;
Я ничего не понял=) Видимо, при расчетах потери напряжения да при расчете токов короткого замыкания мы должны учитывать сопротивление проводников, как при нормальных условиях.
Стоит заметить, что все табличные значения приводят при температуре 20 градусов.
А какие нормальные условия? Я думал 30 градусов Цельсия.
Давайте вспомним физику и посчитаем, при какой температуре сопротивление меди (алюминия) увеличится в 1,25 раза.
R1=R0
R0 – сопротивление при 20 градусах Цельсия;
R1 — сопротивление при Т1 градусах Цельсия;
Т0 — 20 градусов Цельсия;
α=0,004 на градус Цельсия (у меди и алюминия почти одинаковые);
R1/R0=1,25
1,25=1+α (Т1-Т0)
Т1=(1,25-1)/ α+Т0=(1,25-1)/0,004+20=82,5 градусов Цельсия.
Как видим, это совсем не 30 градусов. По всей видимости, все расчеты нужно выполнять при максимально допустимых температурах кабелей. Максимальная рабочая температура кабеля 70-90 градусов в зависимости от типа изоляции.
Честно говоря, я с этим не согласен, т.к. данная температура соответствует практически аварийному режиму электроустановки.
В своих программах я заложил удельное сопротивление меди – 0,0175 Ом · мм2/м, а для алюминия – 0,028 Ом · мм2/м.
Если помните, я писал, что в моей программе по расчету токов короткого замыкания получается результат примерно на 30% меньше от табличных значений. Там сопротивление петли фаза-ноль рассчитывается автоматически. Я пытался найти ошибку, но так и не смог. По всей видимости, неточность расчета заключается в удельном сопротивлении, которое используется в программе. А удельное сопротивление может задать каждый, поэтому вопросов к программе не должно быть, если указать удельные сопротивления из выше приведенного документа.
А вот в программы по расчету потерь напряжения мне скорее всего придется внести изменения. Это приведет к увеличению на 25% результатов расчета. Хотя в программе ЭЛЕКТРИК, потери напряжения получается практически такие, как у меня.
Если вы впервые попали на этот блог, то ознакомиться со всеми моими программами можно на странице МОИ ПРОГРАММЫ.
Как вы считаете, при какой температуре нужно считать потери напряжения: при 30 или 70-90 градусах? Есть ли нормативные документы, которые ответят на этот вопрос?
Советую почитать:
Расчет объема монтажной пены для герметизации труб с кабелем
Расчет мощности жилого дома для ТУ
Расчет категории помещения по взрывопожарной и пожарной опасности
Программа для расчета нагрузок жилых зданий
Определение активных и индуктивных сопротивлений проводов
> Теория > Удельное сопротивление меди
4 Выбор сечения кабеля 4.1 Выбор по допустимому нагреву
4.2 Допустимые потери напряжения
5 Электросопротивление других металлов
6 Индуктивное сопротивление
7
Формула вычисления сопротивления проводника
Удельное сопротивление
Удельное сопротивление
Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:
p=(R*S)/l.
Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.
Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:
- Материал. У разных металлов различная плотность атомов и количество свободных электронов;
- Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
- Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.
На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.
Удельное сопротивление металлов
Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.
Удельное сопротивление меди и алюминия для расчетов
Несмотря на то, что данная тема может показаться совсем банальной, в ней я отвечу на один очень важный вопрос по расчету потери напряжения и расчету токов короткого замыкания. Думаю, для многих из вас это станет таким же открытием, как и для меня.
Недавно я изучал один очень интересный ГОСТ:
ГОСТ Р 50571.5.52-2011 Электроустановки низковольтные. Часть 5-52. Выбор и монтаж электрооборудования. Электропроводки.
Советую почитать данный документ, т.к. там много чего полезного.
В этом документе приводится формула для расчета потери напряжения и указано:
р — удельное сопротивление проводников в нормальных условиях, взятое равным удельному сопротивлению при температуре в нормальных условиях, то есть 1,25 удельного сопротивления при 20 °С, или 0,0225 Ом · мм2/м для меди и 0,036 Ом · мм2/м для алюминия;
Я ничего не понял=) Видимо, при расчетах потери напряжения да при расчете токов короткого замыкания мы должны учитывать сопротивление проводников, как при нормальных условиях.
Стоит заметить, что все табличные значения приводят при температуре 20 градусов.
А какие нормальные условия? Я думал 30 градусов Цельсия.
R1=R0
R0 – сопротивление при 20 градусах Цельсия;
R1 — сопротивление при Т1 градусах Цельсия;
Т0 — 20 градусов Цельсия;
α=0,004 на градус Цельсия (у меди и алюминия почти одинаковые);
R1/R0=1,25
1,25=1+α (Т1-Т0)
Т1=(1,25-1)/ α+Т0=(1,25-1)/0,004+20=82,5 градусов Цельсия.
Как видим, это совсем не 30 градусов. По всей видимости, все расчеты нужно выполнять при максимально допустимых температурах кабелей. Максимальная рабочая температура кабеля 70-90 градусов в зависимости от типа изоляции.
Честно говоря, я с этим не согласен, т.к. данная температура соответствует практически аварийному режиму электроустановки.
В своих программах я заложил удельное сопротивление меди – 0,0175 Ом · мм2/м, а для алюминия – 0,028 Ом · мм2/м.
По всей видимости, неточность расчета заключается в удельном сопротивлении, которое используется в программе.
А удельное сопротивление может задать каждый, поэтому вопросов к программе не должно быть, если указать удельные сопротивления из выше приведенного документа.
А вот в программы по расчету потерь напряжения мне скорее всего придется внести изменения. Это приведет к увеличению на 25% результатов расчета. Хотя в программе ЭЛЕКТРИК, потери напряжения получается практически такие, как у меня.
Медь. Ее характеристики и свойства
Описание вещества и свойства
Медь — это металл, который очень давно был открыт человечеством и также давно применяется для различных технических целей. Медь очень ковкий и пластичный металл с высокой электрической проводимостью, это делает ее очень популярной для изготовления различных проводов и проводников.
Физические свойства меди:
- температура плавления — 1084 градусов по Цельсию;
- температура кипения — 2560 градусов по Цельсию;
- плотность при 20 градусах — 8890 килограмм деленный на кубический метр;
- удельная теплоемкость при постоянном давлении и температуре 20 градусов — 385 кДж/Дж*кг
- удельное электрическое сопротивление — 0,01724;
Марки меди
Данный металл можно разделить на несколько групп или марок, каждая из которых имеет свои свойства и свое применение в промышленности:
- Марки М00, М0, М1 — отлично подходят для производства кабелей и проводников, при ее переплавке исключается перенасыщение кислородом.
- Марки М2 и М3 — дешевые варианты, которые предназначены для мелкого проката и удовлетворяют большинству технических и промышленных задач небольшого масштаба.
- Марки М1, М1ф, М1р, М2р, М3р — это дорогие марки меди, которые изготавливаются для конкретного потребителя со специфическими требованиями и запросами.
Между собой марки отличаются по нескольким параметрам:
- вид поставки;
- насыщение кислородом;
- разница в показателе сопротивления;
- наличие примесей;
- степень теплопроводности;
Влияние примесей на свойства меди
Примеси могут влиять на механические, технические и эксплуатационные свойства продукции.
- Механические свойства. Такие вещества, как железо, висмут, свинец или кислород, оказывают влияние на пластичность меди. Некоторые малорастворимые примеси влияют на сохранение структуры вещества при увеличении температуры. Например, свинец или висмут делает медь очень хрупкой, а вот добавление хотя бы незначительного количества серебра (пять сотых процента) значительно повышает плавкость меди, то есть даже при высоких температурах ее кристаллическая решетка остается неизменной, при этом не происходит потереть тепло- или электропроводимости.
- Технические свойства. К ним относят обработку давлением при разных температурах и сплавляемость (сварка) вещества. При наличии малорастворимых примесей в меди появляются зоны особой хрупкости при большой температуре, это делает обработку давлением очень трудной, однако, в марках М1 и М2 нужная пластичность достигается за счет низкого содержания примесей. Если говорить о давлении при низких температурах, то данная технология применяется при производстве катанки (проволоки) и для разных марок способность к вытяжке также различна.
- Эксплуатационные свойства. При стандартных условиях эксплуатации разные марки ведут себя вполне одинаково, но из-за содержания водорода и кислорода в разных марках условия применяются при повышении температуры. В частности, кислород начинает отрицательно влиять на медь при повышении температуры окружающей среды, а водород при нагреве самого вещества до двухсот градусов.
В заключение следует подчеркнуть, что медь — это уникальный металл с уникальными свойствами. Она применяется в автомобилестроении, изготовлении элементов для электроиндустрии, электроприборов, предметов потребления, часов, компьютеров и многого другого. Со своим низким удельным сопротивлением данный металл является отличным материалом для изготовления проводников и прочих электрических приборов. Этим свойством медь обгоняет только серебро, но из-за более высокой стоимости оно не нашло такого же применения в электроиндустрии.
https://youtube.com/watch?v=SlxOEEaQ4Cg
Соединение медных и алюминиевых проводов
В последнее время в быту и промышленности начало использоваться электрооборудование все более высокой мощности. Во времена СССР проводка изготавливалась в основном из дешевого алюминия. Новым требованиям ее эксплуатационные характеристики, к сожалению, уже не соответствуют. Поэтому сегодня в быту и в промышленности очень часто алюминиевые провода меняются на медные. Основным преимуществом последних, помимо тугоплавкости, является то, что при окислительном процессе их токопроводящие свойства не уменьшаются.
Часто при модернизации электросетей алюминиевые и медные провода приходится соединять. Делать это напрямую нельзя. Собственно, электропроводность алюминия и меди различается не слишком сильно. Но только у самих этих металлов. Окислительные же пленки у алюминия и меди свойства имеют неодинаковые. Из-за этого значительно снижается проводимость в месте соединения. Окислительная пленка у алюминия отличается гораздо большим сопротивлением, чем у меди. Поэтому соединение этих двух разновидностей проводников должно производиться исключительно через специальные переходники. Это могут быть, к примеру, зажимы, содержащие пасту, защищающую металлы от появления окиси. Данный вариант переходников обычно используется при соединении проводов на улице. В помещениях чаще применяются ответвительные сжимы. В их конструкцию входит специальная пластина, исключающая прямой контакт между алюминием и медью. При отсутствии таких проводников в бытовых условиях вместо скручивания проводов напрямую рекомендуется использовать шайбу и гайку в качестве промежуточного «мостика».
Таблица удельного электрического сопротивления некоторых металлов
Вид провода | ρ при 20℃, Ом-м |
Серебряный | 1,59×10⁻⁸ |
Медный | 1,67×10⁻⁸ |
Золотой | 2,35×10⁻⁸ |
Алюминиевый | 2,65×10⁻⁸ |
Вольфрамовый | 5,65×10⁻⁸ |
Никелевый | 6,84×10⁻⁸ |
Железный | 9,7×10⁻⁸ |
Платиновый | 1,06×10⁻⁷ |
Стальной | 1,6×10⁻⁷ |
Свинцовый | 2,06×10⁻⁷ |
Дюралюминиевый | 4,0×10⁻⁷ |
Нихромовый | 1,05×10⁻⁶ |
Удельное сопротивление абсолютно независимо от формы и размеров проводника, однако варьируется в широком диапазоне при отклонении температуры от принятого за стандартное значения, равного 20 градусам Цельсия. Практическим электротехническим путем доказано, что увеличение температуры повышает сопротивляемость металлов течению тока, с обратной стороны — вместе со снижением температуры она снижается. Примерно подсчитать, насколько существенным будет изменение, можно с учетом того, что всем металлам присущ почти одинаковый уровень прироста убыли данной величины, в среднем составляющий 0,4% на 1°С.
Вам это будет интересно Фен для паяния
График сопротивления
Если же данный показатель нужно определить точно, то можно воспользоваться этой формулой:
ρ = ρ0 x (1 + α x (t — t))
, где ρ и ρ0 — соответственно удельные сопротивления при температурах t и t (20°С, табличное значение), α — температурный коэффициент сопротивления.
Вид провода | α |
Никелевый | 0,005866 |
Железный | 0,005671 |
Молибденовый | 0,004579 |
Вольфрамовый | 0,004403 |
Алюминиевый | 0,004308 |
Медный | 0,004041 |
Серебряный | 0,003819 |
Платиновый | 0,003729 |
Золотой | 0,003715 |
Цинковый | 0,003847 |
Стальной | 0,003 |
Нихромовый | 0,00017 |
Так, к примеру, найдя в таблицах удельное сопротивление меди при 20 градусах Цельсия и ее температурный коэффициент, можно вычислить, что при нагреве до 100℃ ее сопротивление вырастет на 32%. Практически то же самое будет происходить с удельным сопротивлением алюминиевого кабеля с тем же коэффициентом (0,004). А вот удельное сопротивление стали повысится менее значительно — на 24%.
Нагрев
С увеличением температуры проводник насыщается тепловой энергией, передающейся всем атомам вещества. Этим обуславливается повышение интенсивности их теплового движения. Последний фактор и приводит к повышению сопротивляемости движению свободных электронов в определенном направлении, поскольку возрастает вероятность встречи свободных электронов с атомами. Когда температура снижается, меньшее количество атомов может препятствовать направленному движению электронов, следовательно, происходит обратное. В результате колоссального спада температуры возникает интереснейшее явление, называемое «сверхпроводимостью металлов»: сопротивляемость уменьшается до нуля в условиях, близких к абсолютному нулю (-273,15℃). В таких кондициях атомы металла замирают на своих позициях, и электроны движутся без каких-либо препятствий.
Сверхпроводимость