Максимальная кинетическая энергия груза на пружине
Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.
Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:
В этом соотношении ω – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закона Гука:
Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими .
При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины.
Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.
Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот.
Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.
Для груза на пружине:
Запуск колебательного движения тела осуществляется с помощью кнопки Старт . Остановить процесс в любой момент времени позволяет кнопка Стоп .
Графически показано соотношение между потенциальной и кинетической энергиями при колебаниях в любой момент времени
Обратите внимание, что в отсутствие затухания полная энергия колебательной системы остается неизменной, потенциальная энергия достигает максимума при максимальном отклонении тела от положения равновесия, а кинетическая энергия принимает максимальное значение при прохождении тела через положение равновесия
Задание 7. Верхний конец пружины идеального пружинного маятника неподвижно закреплён, как показано на рисунке. Масса груза маятника равна m, жёсткость пружины равна k. Груз оттянули вниз на расстояние x от положения равновесия и отпустили с начальной скоростью, равной нулю. Формулы А и Б позволяют рассчитать значения физических величин, характеризующих колебания маятника.
Установите соответствие между формулами и физическими величинами, значение которых можно рассчитать по этим формулам.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
1) амплитуда колебаний скорости
2) циклическая частота колебаний
3) максимальная кинетическая энергия груза
4) период колебаний
А) Имеем пружинный маятник массой m и жесткостью пружины k, тогда период свободных колебаний этого маятника определяется по формуле
Б) Для пружинного маятника известны формулы кинетической энергии
Пружинный маятник, состоящий из груза и лёгкой пружины, совершает колебания. В момент, когда груз находится в крайнем положении, его немного подталкивают вдоль оси пружины в направлении от положения
равновесия. Как в результате этого изменяются максимальная кинетическая энергия груза маятника и частота его колебаний?
Для каждой величины определите соответствующий характер изменения:
3) не изменяется
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Максимальная кинетическая энергия груза маятника | Частота колебаний маятника |
Груз подтолкнули от положения равновесия, откуда следует, что амплитуда колебаний груза увеличится. При этом увеличится также и максимальная потенциальная энергия пружины. По закону сохранения энергии, это приведет к увеличению максимальной кинетической энергии груза маятника.
Период и частота пружинного маятника зависят только от массы груза и жесткости пружины. Таким образом, при увеличении амплитуды колебаний груза, частота колебаний маятника не изменится.
Примеры задач с решением
Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600 frac$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1 frac$?
Решение. Сделаем рисунок.
По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:
где $E_$ — потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_$ — кинетическая энергия шарика, в момент прохождения положения равновесия.
Потенциальная энергия равна:
В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:
Из (1.4) выразим искомую величину:
Вычислим начальное (максимальное) смещение груза от положения равновесия:
Ответ. $x_0=1,5$ мм
Задание. Пружинный маятник совершает колебания по закону: $x=A $где $A$ и $omega $ — постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_$. В какой момент времени это произойдет?
Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:
Потенциальную энергию колебаний груза найдем как:
В момент времени, который следует найти $F=F_0$; $E_p=E_$, значит:
Это интересно: вечный двигатель
Ах, если бы!
Если бы в этом мире была возможность создать систему, внутри которой действуют исключительно консервативные силы, то у человечества бы существовал вечный двигатель. Вообще, вечный двигатель — это воображаемое устройство, что единожды запущенное, не прекращает совершать полезную работу. Он, соответственно, умеет в полном объеме сохранять изначально переданную ему энергию и не расходует ее на работу против диссипативных сил. Потому что они там попросту не возникают.
Закон сохранения энергии в его идеальном воплощении… Однако для этого нужно соблюсти три нереальных условия:
- Никаких шероховатостей, даже микроскопических! Сила трения между деталями приводит к потере энергии. Значит, нужны идеально гладкие поверхности.
- Долой воздух! Сила трения также возникает при взаимодействии молекул воздуха с поверхностью деталей. Хоть и работа против воздуха крайне мала, энергия, как бы оно ни было, убывает.
- Полная тишина! Устройство не должно воспроизводить вообще никаких звуков, ибо звук — одна из форм передачи энергии. Но новости тут хорошие: проблема эта решается вакуумом, так как в нем звук не распространяется.
Жаль, что идеального вакуума, ровно как идеально гладких поверхностей, не существует. От диссипативных сил не спрятаться и не скрыться. Они есть причина, почему вечный двигатель в условиях физики Земли невозможен.
Теоретическое представление вечного двигателя.
Максимальная кинетическая энергия груза
Для простого пружинного маятника полную энергию груза в любой момент времени можно выразить как
- $E_p$ — потенциальная энергия,
- $E_k$ — кинетическая энергия,
- $m$ — масса,
- $v$ — моментальная скорость,
- $k$ — коэффициент упругости,
- $x$ — приращение длины пружины в данный момент.
Задай вопрос специалистам и получи ответ уже через 15 минут!
Максимальную кинетическую энергию можно вычислить как
где $v_ $ — максимальная скорость груза. Однако измерить ее на практике сложно. Проще, опираясь на постоянство суммы кинетической и потенциальной энергий, определить максимальную потенциальную (когда кинетическая равна нулю). Поскольку справедливо и обратное, можно записать:
где $x_ $ — максимальное приращение растяжения пружины. Его легко измерить, а коэффициент упругости посмотреть в справочнике.
Компактный груз, массой 0,5 кг прикреплен к движущейся горизонтально пружине. Ее коэффициент упругости равен 2000 $frac $. Каково было начальное приращение длины пружины, если его максимальная скорость во время колебаний составляет 1 $frac $?
Из условий задачи можно найти максимальную кинетическую энергию груза:
Выразив максимальную потенциальную энергию через приращение длины пружины, составим равенство:
Ответ: $approx 1,6 мм$.
Так и не нашли ответ на свой вопрос?
Просто напиши с чем тебе нужна помощь
Груз математического маятника массой 10 г совершает гармонические колебания. При этом скорость v груза изменяется с течением времени t по закону v = 2sin ( 0,5πt )
Чему равна максимальная кинетическая энергия груза при таких колебаниях?
помогите пожалуйста — вот я знаю Е кин = mv^2/2 но от куда я должна взять значения. что взять из этой формулы? ( v = 2sin ( 0,5πt )) 2 — это скорость, которую можно подставить в Е? 0,5 это w , с этим что то сделать?
оу. не я получила 0,02. Тааак. а в каких это единицах? это равно 2м дж?
При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли.
Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.
Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот .
Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.
Максимальная кинетическая энергия груза на пружине
Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.
Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:
В этом соотношении ω – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закона Гука:
Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими .
При свободных механических колебаниях кинетическая и потенциальная энергии изменяются периодически. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на горизонтально расположенной пружине потенциальная энергия – это энергия упругих деформаций пружины.
Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.
Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот.
Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.
Для груза на пружине:
Запуск колебательного движения тела осуществляется с помощью кнопки Старт . Остановить процесс в любой момент времени позволяет кнопка Стоп .
Графически показано соотношение между потенциальной и кинетической энергиями при колебаниях в любой момент времени
Обратите внимание, что в отсутствие затухания полная энергия колебательной системы остается неизменной, потенциальная энергия достигает максимума при максимальном отклонении тела от положения равновесия, а кинетическая энергия принимает максимальное значение при прохождении тела через положение равновесия
Задание 7. Верхний конец пружины идеального пружинного маятника неподвижно закреплён, как показано на рисунке. Масса груза маятника равна m, жёсткость пружины равна k. Груз оттянули вниз на расстояние x от положения равновесия и отпустили с начальной скоростью, равной нулю. Формулы А и Б позволяют рассчитать значения физических величин, характеризующих колебания маятника.
Установите соответствие между формулами и физическими величинами, значение которых можно рассчитать по этим формулам.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
1) амплитуда колебаний скорости
2) циклическая частота колебаний
3) максимальная кинетическая энергия груза
4) период колебаний
А) Имеем пружинный маятник массой m и жесткостью пружины k, тогда период свободных колебаний этого маятника определяется по формуле
Б) Для пружинного маятника известны формулы кинетической энергии
Пружинный маятник, состоящий из груза и лёгкой пружины, совершает колебания. В момент, когда груз находится в крайнем положении, его немного подталкивают вдоль оси пружины в направлении от положения
равновесия. Как в результате этого изменяются максимальная кинетическая энергия груза маятника и частота его колебаний?
Для каждой величины определите соответствующий характер изменения:
3) не изменяется
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Максимальная кинетическая энергия груза маятника | Частота колебаний маятника |
Груз подтолкнули от положения равновесия, откуда следует, что амплитуда колебаний груза увеличится. При этом увеличится также и максимальная потенциальная энергия пружины. По закону сохранения энергии, это приведет к увеличению максимальной кинетической энергии груза маятника.
Период и частота пружинного маятника зависят только от массы груза и жесткости пружины. Таким образом, при увеличении амплитуды колебаний груза, частота колебаний маятника не изменится.
Слободянюк А.И. Физика 10/6.6 — PhysBook
Содержание книги
Предыдующая страница
6.6 Потенциальная энергия деформированной пружины.
Деформированная (например, растянутая) пружина способна совершить работу. Действительно, если к растянутой пружине прикрепить некоторое тело, то пружина будет действовать на него с некоторой силой, под действием которой тело начнет смещаться, следовательно, будет совершена работа (рис. 86).
Сила, с которой пружина действует на тело, не является постоянной, поэтому для вычисления работы воспользуемся графическим методом. Построим график зависимости силы упругости F = kx от координаты, который является прямой линией (рис. 87). Площадь выделенного треугольника под графиком равна максимальной работе, которую может совершить пружина, понятно, что она равна
Для того чтобы пружине приписать потенциальную энергию, равную максимальной работе (1) необходимо показать, что эта работа не зависит от траектории движения тела. Чтобы доказать это утверждение, достаточно рассмотреть работу на малом участке перемещения \(~\Delta \vec r\) при движении по произвольной траектории (рис. 88). В данном случае эта работа \(~\delta A = \vec F \cdot \Delta \vec r = kx \cdot \Delta r \cos \alpha = kx \cdot \Delta x\) , полностью определяется изменением деформации пружины x, поэтому она не зависит от траектории движения тела.
Таким образом, силы упругости, подчиняющиеся закону Гука, являются потенциальными, и потенциальная энергия деформированной пружины определяется формулой
Нулевой уровень потенциальной энергии, рассчитываемой по формуле (2), соответствует недеформированной пружине.
Подсчитаем, какую минимальную работу следует совершить, чтобы пружину, жесткостью k, растянуть на величину x (рис. 89). Чтобы деформировать пружину, к ней необходимо приложить внешнюю силу. Очевидно, что эта работа будет минимальная в том случае, когда внешняя приложенная сила в любой точке равна силе упругости, действующей со стороны пружины, поэтому работа этой силы будет равна \(~A = \frac{kx^2}{2}\) , то есть увеличению потенциальной энергии пружины.
Следующая страница
Закон сохранения механической энергии
Полная механическая энергия тела EM равна сумме потенциальной и кинетической энергий:
$ {E_м = E_p + Е_k} $ (8).
К середине XIX века физики разных стран на основании многочисленных исследований физических и химических процессов сформулировали закон сохранения и превращения энергии. В общем виде закон звучит так:
При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.
Действие этого закона для механической энергии рассмотрим на классическом примере подброшенного вертикально вверх металлического шарика. При подъеме шарика его скорость убывает, так как на него действует сила земного тяготения. Согласно формулы (2) убывает и кинетическая энергия Ек. В то же время, с ростом высоты h растет потенциальная энергия Ep (см. формулу (5)). Воспользовавшись формулами (2), (4) и (5) можно получить, что в любой точке уменьшение величины Ек равно увеличению величины Ep. В момент прекращения движение вверх (в верхней точке подъема), вся кинетическая энергия полностью перейдет в потенциальную. При движении (падении) тела вниз происходит обратный процесс: потенциальная энергия тела Ep превращается в кинетическую Ек.
Приведенный пример иллюстрирует выполнение закона сохранения и превращения механической энергии, так как при подъеме уменьшение кинетической энергии полностью компенсируется ростом потенциальной (при падении — наоборот). Если потенциальная энергия у поверхности земли равна нулю, (т.к. h=0). то на любой высоте будет выполняться равенство:
$ {E_м = E_p + Е_k = {m*v_0^2\over 2}} $ (9),
где: v— начальная скорость шарика.
Рис. 3. Сохранение механической энергии подброшенного шарика.
Для случая механической энергии закон сохранения можно сформулировать так: если между телами системы действуют исключительно силы упругости и силы тяготения, то сумма потенциальной и кинетической энергий остается постоянной, то есть механическая энергия сохраняется.
Если между телами кроме сил тяготения и упругости действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии будет превращаться во внутреннею энергию тел, то есть перейдет в тепло. Общий закон сохранения энергии, конечно, остается в силе. Происходит только перераспределение части механической энергии в тепловую (внутреннею).
Что мы узнали?
Итак, при изучении данной темы мы узнали что механическая энергия тела состоит из кинетической и потенциальной энергий. Энергия — это запас работы, которую может совершить тело, изменяя свое состояние. Закон сохранения энергии в механике утверждает, что энергия не возникает и не исчезает, а только превращается из одной формы (потенциальной энергии) в другую — кинетическую. Механическая энергия сохраняется в случае отсутствия силы трения.
-
/10
Вопрос 1 из 10
Что такое кинетическая энергия
Кинетическая энергия – это энергия, создаваемая движущимся телом. На греческом языке кинетика означает «движение», в то время как энергия означает «работа». Другими словами, кинетическая энергия – это работа, которую тело выполняет, когда оно движется.
Мы можем воспользоваться кинетической энергией многих природных явлений. Например, движение воды в реке превращается в электричество благодаря электростанциям. Энергия ветра – это кинетическая энергия воздуха. Когда мы прибиваем гвоздь молотком, мы используем кинетическую энергию молотка при его перемещении.
Кинетическая энергия в физике измеряется в джоулях , сокращенно буквой J.
Формула кинетической энергии
Для расчета кинетической энергии тел используется уравнение:
Это означает, что кинетическая энергия Ec равна массе тела m, умноженной на квадрат скорости v, делённые на 2.
Мы можем сделать вывод, что чем больше масса, тем больше энергия, и что энергия пропорциональна скорости, умноженной на себя.
Кинетическая энергия не является вектором. Это означает, что если вы бросаете шар со скоростью 5 м / с, шар будет иметь одинаковую кинетическую энергию, независимо от того, бросаете ли вы его влево или вправо или вверх.
Кинетическая энергия зависит от массы и скорости
Гоночные машины спроектированы с наименьшей массой для улучшения характеристик.
Кинетическая энергия зависит от массы и скорости тела. Это означает, что чем больше или быстрее объект, тем больше энергии он производит.
Примером вышесказанного может быть следующее: грузовик больше, чем автомобиль; Если оба едут с одинаковой скоростью и врезаются в стену, урон, нанесенный грузовиком, будет больше. В этом случае грузовик обладает большей кинетической энергией.
А теперь представьте: две одинаковые машины едут, одна со скоростью 50 км / ч, а другая со скоростью 100 км / ч. Чем выше скорость, тем серьезнее авария.
Таким образом, кинетическая энергия зависит от квадрата скорости. Это означает, что когда скорость объекта удваивается, его кинетическая энергия увеличивается в четыре раза.
Автомобиль, движущийся со скоростью 60 км / ч, имеет в четыре раза больше кинетической энергии, чем автомобиль, движущийся со скоростью 30 км / ч, и, следовательно, в четыре раза больший потенциал разрушения в случае аварии.
Как рассчитать кинетическую энергию тела?
В аэропорту хотят рассчитать кинетическую энергию 30-килограммовой упаковки в системе, которая движется со скоростью 0,500 м / с. Как мы это делаем?
- Мы знаем массу и скорость упаковки, поэтому используем формулу:
- Подставляя значения, имеем:
Рассуждение
Единицей кинетической энергии является джоуль, которая является той же для единицы работы
Обратите внимание, что, несмотря на то, что он тяжелый, его кинетическая энергия не так велика из-за его низкой скорости
Ключевые моменты для запоминания
- Тело имеет кинетическую энергию, только если оно находится в движении.
- Кинетическая энергия зависит от массы и скорости тела.
Задача 1 на нахождение кинетической энергии
Слон в 6000 кг бежит со скоростью 10 м / с. Какова его кинетическая энергия? Какова скорость пушечного ядра весом 1 кг, если у него была та же самая кинетическая энергия слона?
Ответ
Используя уравнение кинетической энергии, энергия слона равна:
Рассчитав кинетическую энергию, мы можем получить скорость пули, очистив v:
Это означает, что скорость пули равна 775 м / с. Сравните это со скоростью слона: вот это разница!
Задача 2
Мужчина врезался в столб на своей машине. Когда он пошел, чтобы сообщить о катастрофе, он сказал, что ехал с допустимой скоростью во время аварии.
Но следователь помнил физику 7 и 8 класса и установил, что скорость транспортного средства была в два раза выше, чем утверждал водитель.
Какова взаимосвязь между кинетической энергией и скоростью, сообщаемой человеком, и кинетической энергией со скоростью, рассчитанной следователем?
Мы будем рассматривать Ec1 как кинетическую энергию транспортного средства на скорости v1, сообщаемой человеком, и Ec2 как кинетическую энергию со значением скорости v2, рассчитанным исследователем. Соотношение между кинетическими энергиями рассчитывается путем деления энергий следующим образом:
- Следователь сказал, что скорость во время аварии была вдвое выше, чем сообщал человек, то есть:
- Подставим значение скорости в уравнение:
Исключая похожие термины, мы имеем:
Это означает, что кинетическая энергия в соответствии со скоростью, сообщаемой человеком, составляет четверть кинетической энергии по расчетам следователя. Проще говоря, ущерб, нанесенный автомобилем, был в четыре раза больше, чем сообщал мужчина.
Уравнение движения вращающегося тела
Рассматривая подобное свойство также следует уделить внимание уравнению движения вращающегося тела. Не стоит забывать о том, что вращательное движение твердого тела характеризуется наличием как минимум двух точек
При этом отметим нижеприведенные особенности:
- Прямая, которая соединяет две точки, выступает в качестве оси вращения.
- Есть возможность провести определение места положения объекта в случае вычисления заднего угла между двумя плоскостями.
- Наиболее важным показателем можно назвать угловую скорость. Она связана с инерцией, которая возникает при вращении объекта.
Для вычисления угловой скорости применяется специальная формула, которая выглядит следующим образом: w=df/dt
В некоторых случаях проводится вычисление углового ускорения, которое также является важной величиной