Храповый механизм

Описание патента на изобретение SU37990A1

Для получения передачи, при которой периоды более или менее быстрого движения чередуются с периодами покоя, в машиностроении обычно применяются два рода механизмов с цевочным зацеплением: звездчатка мальтийский крест. Звездчатая передача применяется, главным образом, тогда, когда требуется сравнительнб длительный период движения прервать короткой остановкой; в обратном случае, т. е. для получения длительной остановки и короткого перемещения (как например, при смене кадров в кино-проекционном аппарате) применяется мальтийский крест.

Механизм мальтийского креста допускает не менее трех лопастей, чем обусловливается максимальный угол включения в 120°. Это обстоятельство является одним из существенных недостатков мальтийского креста, ограничивающим сферу его применения в мащиностроении. Необходимость радиального вхождения цевки ведущего колеса в шлиц мальтийского креста, во избежание рывков, создает условие, при котором число лопастей креста практически определяет отношение периода движения к периоду покоя. Для избежания вышеуказанных недостатков обыч(140)

ной мальтийской передачи предлагается комбинировать ряд мальтийских систем.

На чертеже фиг. 1 показывает схему предлагаемой мальтийской системы; фиг. 2-перспективный вид видоизмененной системы и фиг. В-разрез по линии АВ на фиг. 1.

Устройство предлагаемой мальтийской передачи следующее: на равномерно вращающемся валу 1 насажено ведущее колесо 2 с цевкой 3, а в одной плоскости с последней располагается мальтийский крест 4, соединенный со вторым цевочным колесом 5; в плоскости последнего располагается второй мальтийский крест 6, опять-таки соединенный со следующим цевочным колесом и так далее, до передачи требуемого движения рабочему валу 7.

При применении такой системы передачи можно, путем изменения количества звеньев системы или количества лопастей мальтийских крестов каждого звена, или количества цевок на ведущих колесах, получать любые соотношения моментов покоя и движения и любые углы включения.

Если обозначить через я-количество звеньев системы, Wo -угловую скорость ведущего вала, Zn -количество лопастей

Классификация механических передач

Механические передачи, применяемые в машиностроении, класси­фицируют (рис.1 и 2):

по энергетической характеристике механические передачи делятся на:

– кинематические (передаваемая мощность Р<0,1 кВт),

– силовые (передаваемая мощность Р≥0,1 кВт).

по принципу передачи движения:

передачитрением (примеры: фрикционная —рис.1, аи ременная — рис.2, а) – действующиеза счет сил трения, создаваемых между элементами передач;

Фрикционные передачи подразделяют на:

– фрикционные передачи с жесткими звеньями (с различного рода катками, дисками);

– фрикционные передачи с гибким звеном (ременные, канатные).

зацеплением (примеры: зубчатые — рис.1, б, червячные — рис.1, в; цеп­ные — рис.2, б; передачи винт-гайка — рис.1, г, д) – работающие в результате возникновения давлениямежду зубьями, кулачками илидругимиспециальными выступами на деталях.

Передачи зацеплением делятся на:

– передачи зацеплением с непосредственным контактом жестких звеньев (цилиндрические, конические, червячные);

– волновые передачи зацеплением;

– передачи зацеплением с гибким звеном (зубчато-ременные, цепные).

Как фрикционные, так и зубчатые передачи могут быть выполнены с непосредственным контактом ведущего иведомого звеньев или посредством гибкой связи – ремня, цепи.

Классификация электромуфт

В большинстве случаев электромуфты классифицируются по тому, в какой области они применяются. Чаще всего применяется электромагнитная фрикционная муфта. Она обладает следующими свойствами:

  1. Устройство может применяться для снижения вероятности воздействия импульсных нагрузок.
  2. На холостом ходу конструктивные особенности определяют незначительные потери. Этот момент определяет то, что основные элементы не нагреваются при эксплуатации.
  3. Есть возможность провести быстрый пуск механизма даже в случае, если оно находится под большой нагрузкой.

Рассматриваемый тип механизма делится на несколько основных типов:

  1. Контактные.
  2. Тормозные.
  3. Бесконтактные.

Довольно част встречается муфта электромагнитная тормозная, которая может снизить количество оборотов при работе.

  1. Катушки электромагнитного типа. Она изготавливается при применении специальных сплавов, которые характеризуются определенными свойствами. Катушка требуется для непосредственной генерации электромагнитного поля.
  2. Пластин прижимного типа. Этот элемент конструкции должен характеризоваться высокой прочностью.
  3. Шкива, который передает усилие от электрического двигателя. Привод подобного типа получил довольно широкое распространение, так как он обеспечивает защиту устройства от перегрева при большой нагрузке. За счет смены шкивов есть возможность регулировать количество оборотов на выходе.

В рассматриваемом случае на катушку подается электричество, которое образует электромагнитное поле. За счет этого происходит притягивание прижимной пластины к шкиву. Подобное перемещение дает свободу валу, и механизм начинает работать.

Компрессорные установки получили весьма широкое распространение

Именно поэтому нужно уделять внимание следующим дефектам:

  1. Довольно часто встречается ситуация, когда подшипник шкива деформируется. В этом случае достаточно провести замену элемента.
  2. Прижимная пластина изготавливается из тонкого метала, поэтому на момент эксплуатации она может деформироваться. Кроме этого, проблема возникает в случае неправильной установки зазора.
  3. Встречается ситуация сгорания самой муфты. Она чаще всего связана с высоким напряжением, которое подается на катушку.

Развитие современных технологий определило то, что в автомобилях проводится установка электромагнитной муфты сцепления. Она делиться на несколько различных типов в зависимости от привода:

  1. Гидравлический. Этот вариант исполнения характеризуется тем, что передача усилия осуществляется за счет жидкости в системе. Масло и вода хорошо подходят для передачи усилия. Однако, гидравлический привод на сегодняшний день характеризуется относительно низкой надежностью.
  2. Механический. Подобное устройство характеризуется тем, что передача усилия проводится за счет сочетания различных элементов. Примером можно назвать звездочки, шестерни и другие детали.
  3. Муфта сцепления электромагнитная.

Наиболее распространен последний тип механизма. При этом он также классифицируется на несколько основных типов:

  1. По показателю трения выделяют мокрые и сухие. В последнее время большое распространение получили варианты исполнения, которые могут работать только при добавлении масла.
  2. Классификация проводится и по режиму включения: непостоянные и постоянные.
  3. Выделяют муфты с одним или несколькими ведомыми дисками. Выбор проводится в зависимости от того, какие требуются эксплуатационные характеристики.
  4. По виду управления также выделяют несколько основных видов механизма. Примером можно назвать механический, гидравлический и комбинированный.

Этот современный вариант исполнения встречается в случае, когда нужно обеспечить смещение соединяемых элементов относительно друг друга на момент эксплуатации.

Классификация рычажных механизмов

Все рычажные механизмы классифицируются по достаточно большому количеству различных признаков. При этом общими свойствами можно назвать высокий показатель КПД и повышенную нагрузочную способность, простоту функционирования. Простейшие рычажные механизмы встречаются в самых различных областях промышленности. Основная классификация проводится по принципу действия:

  1. Четырехзвенники.
  2. Кривошипно-шатунный.
  3. Кулисные механизмы.

Приведенные примеры могут устанавливаться для достижения самых различных целей.

Большое распространение получил коленно-рычажный механизм по причине простоты конструкции и длительного эксплуатационного срока.

Ремонт и смазка редуктора бензокосы

Роль редуктора заключается в передаче вращательного момента с вала мотора на режущий инструмент через 5 зубчатые шестерни с различным количеством зубьев. Вращающий момент передаётся под углом 30. Число оборотов нижнего режущего диска меньше оборотов мотора в 1,4 раза. Шестерни должны являться незапятнанными и смазанными. Для подачи масла на зубья сверху встречаются отверстие под винтом.

KEY-DOP

Смазка редуктора бензокосы производится не пореже раза за сезон. Если работа насыщенная иначе говоря появился сторонний шум в нижнем узле, смазывать нужно почаще.

Сначала следует очистить от земли и травки место, где пробка закрывает отверстие. Вывернуть пробку подходящим инвентарем, он прилагается в комплекте с пилой. Используем консистентную смазку из тюбика. Выбирается либо родная смазка фирменные, иначе говоря известные высококачественные составы, такие как Олео-Мас, Литол.24, Азмол 158. Вскрываем слой защиты тюбика и укладываем инструмент на бок. Потихоньку вращая ножик, смазку выдавливать в корпус редуктора. Шестерни, проворачиваясь, разносят состав зубьями на всей поверхности. Также налить смазку конечно особым шприцом.

Недочет по другому множество смазки приводят к нагреву редуктора. Слышный стук и свободный ход говорят о разрушении подшипника по другому попадании грязищи по причине повреждения пыльников. Подмену подшипников нужно вести при помощи съёмника, не используя способ разогрева.

Если редуктор шатается и ездит по штанге, нужна подмена корпуса, либо стянуть временно хомутом узел, чтоб закрепить его на трубе. Если не стал крутиться ножик, означает, шестерни не входят в зацепление – сносились либо искрошились зубья. Будет нужно подмена пары с полным разбором узла.

Разборку редуктора с демонтажем вала и подшипниковых узлов нельзя вести с помощью нагревания. Металл при нагреве теряет свои прочностные свойства и потом узел становится ненадёжным. Для снятия подшипников пользуются съёмником.

KEY-DOP

При подмене редуктора нужно подобрать новый узел, руководствуясь:

  • поперечником трубы;
  • поперечником приводного вала;
  • сечением приводного вала;
  • метода крепления защиты

Область применения

Сегодня храповик как деталь применяется при создании различных промышленных агрегатов с компонентами инженерных конструкций. При этом может обеспечиваться стабильная работа различных небольших элементов инструментов. Этот момент указывает на универсальность применения храповых механизмов.

С точки зрения технической интеграции устройство обходит многие другие варианты исполнения.

Очень часто производители используют храповик в качестве элемента, через который проводится установка рабочих параметров. Примером можно назвать фиксацию шага реза в определенном диапазоне. Кроме этого, установка проводится при непосредственном изготовлении станочного оборудования.

В последнее время установка проводится в станках для круглой шлифовки, устройство обеспечивает радиальную подачу. Встречается механизм в домкратах и различных лебедочных системах, заводных автомобилях и других устройствах.

Виды механизмов передачи движения

Передачей называют техническое приспособление для передачи того или иного вида движения от одной части механизма к другой. Передача происходит от источника энергии к месту ее потребления или преобразования. Первые передаточные механизмы были разработаны в античном мире и использовались в системах орошения Древнего Египта, Междуречья и Китая. Средневековые механики значительно усовершенствовали устройства, передающие движение, и разработали множество новых видов, используя и в прялках и гончарном деле. Подлинный же расцвет начался в Новое время, с внедрением технологий производства и точной обработки стальных сплавов.

Виды планетарных редукторов

  1. Одноступенчатые.
  2. Многоступенчатые.

Первый вариант исполнения намного проще, характеризуется меньшими размерами и обеспечивает более широкие возможности по передаче крутящего момента. Создание нескольких ступеней определяет существенное увеличение размеров конструкции, а диапазон передаточных чисел уменьшается.

По показателю сложности планетарного редуктора выделяют два основных типа:

  1. Простые.
  2. Дифференциальные.

В зависимости от формы корпуса и применяемым внутри элементам выделяют следующие типы:

  1. Волновые.
  2. Конические.
  3. Червячные.
  4. Цилиндрические или колесного типа.

Их применение позволяет передавать вращение между пересекающимися, перекрещивающимися и параллельными валами. 

Операция

Механизм мальтийского креста работает следующим образом: цилиндр, называемый кривошипом или ведущим колесом, непрерывно вращается с постоянной скоростью и несет на себе палец. Палец входит в канавку мальтийского креста (ведомое колесо), заставляя его вращаться на 1 / n оборот, где n – количество канавок в кресте ( n = 4 на рисунке напротив, 6 на l анимация выше).

Затем палец выходит из паза, цилиндр мотора продолжает движение, а мальтийский крест остается неподвижным. Частично выдолбленный центральный цилиндр дополняет закругление мальтийского креста; это служит для стабилизации положения устройства, когда палец не входит в паз.

Количество канавок может принимать четные или нечетные значения, обычно от 4 до 10.

Типы передач для поступательного движения

Встречается довольно большое количество различных устройств, которые могут применяться для преобразования передаваемого усилия. Большое распространение получили следующие варианты:

  1. Кривошипно-шатунные может применяться для преобразования вращения в возвратно-поступательное движение и наоборот. В качестве основных элементов применяется кривошипный вал, ползун, шатун и специальный элемент кривошипа. Для расчета момента и других параметров могут использоваться различные формулы. В качестве основного элемента также могут использовать коленчатый вал, который имеет одну или несколько ступеней. Они получили весьма широкое распространение, к примеру, двигатели или насосы, сельскохозяйственная техника. При изготовлении основных деталей, как правило, применяется сталь с высокой коррозионной стойкостью.
  2. Кулисные конструкции получили весьма широкое распространение, так как усилие передается без шатуна. В подобном случае ползун напоминает кулису, в которой делается специальное отверстие. На момент вращения кривошипного вала кулиса двигается вправо и налево. В некоторых случаях вместе кулисы применяется стержень с насаженной втулкой. Для обеспечения контакта применяется прижимная пружина. Существенно повысить качество работы устройства можно за счет установки ролика на конце устройства.
  3. Кулачковые варианты исполнения применяются для преобразования вращательного перемещения в возвратно-поступательное. Основным элементом конструкции можно назвать кулачки, а также стержень, криволинейный диск. Для направления положения стержня устанавливается втулка, которая характеризуется весьма высокой точностью позиционирования. Снизить степень трения поверхности можно за счет ролика. В некоторых случаях вместо стержня устанавливается касающийся рычаг. Основные параметры могут быть рассчитаны самостоятельно. Механизм возвратно-поступательного движения рассматриваемого типа применяется в самых различных случаях, к примеру, в механизированном оборудовании.
  4. Шарнирно-рычажные устройства устанавливаются в том случае, если нужно сменить направление движение в какой-либо части устройства. Примером можно назвать ситуация, когда вертикальное перемещение следует перенаправлять в горизонтальное. Кроме этого, в некоторых случаях нужно провести увеличение или уменьшение хода.

Приведенная выше информация указывает на то, что встречается просто огромное количество различных вариантов исполнения механизмов. Выбор проводится по самым различным критериям, которые должны учитываться.

Классификация механических передач

Машиностроителями принято несколько классификаций в зависимости от классифицирующего фактора.

По принципу действия различают следующие виды механических передач:

По направлению изменения числа оборотов выделяют редукторы (снижение) и мультипликаторы (повышение). Каждый из них соответственно изменяет и крутящий момент (в обратную сторону).

По числу потребителей передаваемой энергии вращения вид может быть:

Классификация механических передач

По числу этапов преобразования – одноступенчатые и многоступенчатые.

По признаку преобразования видов движения выделяют такие типы механических передач, как

  • Вращательно-поступательные. Червячные, реечные и винтовые.
  • Вращательно-качательные. Рычажные пары.
  • Поступательно-вращательные. Кривошипно-шатунные широко применяются в двигателях внутреннего сгорания и паровых машинах.

Для обеспечения движения по сложным заданным траекториям используют системы рычагов, кулачков и клапанов.

Количество лопастей

Мальтийский крест кинопроектора 23КПК

В подавляющем большинстве кинопроекторов применяется мальтийский механизм с четырёхлопастным крестом. Это обусловлено максимальным КПД при относительно низких ускорениях ведомого звена, важных с точки зрения износа перфорации. Четырёхлопастный мальтийский механизм обладает рабочим углом 90° — минимальным из всех возможных, не считая трёхлопастного, рабочий угол которого 60°. Но трёхлопастный крест развивает недопустимо высокие ускорения при транспортировке киноплёнки, делающие его непригодным в кинотехнике. Мальтийские механизмы с бо́льшим количеством лопастей имеют более низкий КПД, обладая большим рабочим углом. В кинопроекторах, оснащённых двухлопастным обтюратором с одной холостой лопастью от КПД скачкового механизма зависит полезный световой поток, попадающий на экран, поэтому четырёхлопастный мальтийский крест — наилучший компромисс. Работающий обтюратор такого кинопроектора уменьшает световой поток всего вдвое, имея коэффициент обтюрации 0,5.

Область применения

Несмотря в высокой потребности устройства, которое предназначено для преобразования постоянного вращения в прерывистое, применение мальтийского механизма не столь обширно. Это можно связать прежде всего с относительно низкой точностью. Это определяет следующее:

  1. Как и ранее, сегодня не применяют механизмы для создания киносъемочного оборудования. Исключением можно назвать производство оборудования, которое отвечает за смены положения осветительного оборудования.
  2. Довольно часто мальтийский крест применяется в случае производства различного станочного оборудования. Он требуется для поворота стала под определенным углом, за счет чего повышается функциональность устройства.
  3. Больше распространение механизм получил в сфере производства оборудования, где имеются радиальные пазы.

Не стоит забывать о том, что при ускорении вращения барабана есть вероятность износа пальца. Именно поэтому нужно проводить периодическое обслуживание для продления срока службы.

В заключение отметим, что проще приобрести уже готовый вариант исполнения мальтийского механизма. Это связано со сложностями проведения расчетов и непосредственного производства. Стоимость подобного продукта относительно невысокая, интеграция может проводится самым различным образом.

Похожие патенты SU37990A1

название год авторы номер документа
Автомат для сборки изделий типа цепного транспортера 1973
  • Беланов Иван Захарович
  • Волченко Роман Соломонович
  • Крылов Юрий Евгеньевич
SU518316A1
ПРЕРЫВАТЕЛЬ ДВИЖЕНИЯ ПРИВОДА РАПИРЫ ТКАЦКОГО СТАНКА 2017
  • Уточкин Михаил Анатольевич
  • Керимов Софром Гусейнович
  • Уточкина Елена Михайловна
  • Смирнов-Мальцев Дмитрий Александрович
  • Розанов Игорь Валерьевич
RU2662697C1
СПОСОБ ОБРАЗОВАНИЯ МАХОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ В ВИДЕ МАШУЩЕГО ВИНТА 2010 RU2482010C2
УСТРОЙСТВО ДЛЯ УКЛАДКИ ИЗДЕЛИЙ ПРЕИМУЩЕСТВЕННО В МНОГОРЯДОВНЫЕ КАССЕТЫ 1989 RU2013899C1
Устройство для подачи штучных заготовок в рабочую зону пресса 1973
  • Гаврилкин Владимир Иванович
  • Зотиков Кирилл Григорьевич
  • Губский Григорий Иванович
  • Курцер Александр Залманович
  • Платов Виктор Иванович
SU468679A1
Установка для непрерывного литья заготовок 1977
  • Анисович Геннадий Анатольевич
  • Бевза Владимир Федорович
  • Березовский Феликс Михайлович
  • Долькарт Игорь Михайлович
  • Комаров Александр Павлович
  • Мазько Василий Сергеевич
  • Марукович Евгений Игнатьевич
  • Мельчин Сергей Сергеевич
SU772692A1
МАЛЬТИЙСКИЙ МЕХАНИЗМ 1967
  • Олефиренко В.Н.
  • Басс Б.И.
  • Шахайло Н.И.
SU223544A1
Передача прерывистого вращения 1984 SU1180605A1
Мальтийско-планетарное устройство 1975
  • Корочко Павел Петрович
  • Корочко Татьяна Ивановна
SU587288A1
Мальтийский механизм 1989
  • Сорока Илья Наумович
  • Тохтуев Евгений Глебович
  • Ганусенко Вадим Васильевич
SU1732087A1

За что отвечает датчик распредвала

В двигателях с карбюратором к распредвалу подсоединяется трамблер, который определяет, какая фаза выполняется в первом цилиндре – впуск или выпуск.

В инжекторных ДВС трамблера нет, поэтому за определение фаз первого цилиндра отвечает датчик положения распредвала. Его задача не идентична функционалу датчика коленвала. За один полный оборот вала ГРМ коленвал провернется вокруг оси дважды.

ДПКВ фиксирует ВМТ поршня первого цилиндра и подает импульс на формирование разряда для свечи зажигания. ДПРВ подает сигнал на ЭБУ, в какой момент нужно подать топливо и искру в первый цилиндр. Циклы в остальных цилиндрах происходят поочередно в зависимости от конструкции двигателя.

Датчик распредвала состоит из магнита и полупроводника. На валу ГРМ в районе установки датчика имеется репер (небольшой металлический зуб). Во время вращения этот элемент проходит мимо датчика, благодаря чему магнитное поле в нем замыкается и образуется импульс, идущий на ЭБУ.

Электронный блок управления фиксирует скорость импульсов. По ним он ориентируется, когда в первом цилиндре выполнить подачу и воспламенение топливной смеси. В случае установки двух валов (один на такт впуска, а другой – выпуска), будут установлены по датчику на каждом из них.

Что произойдет, если датчик выйдет из строя? Этому вопросу посвящено данное видео:

Если мотор оснащен системой смещения фаз газораспределения, то от частоты импульсов ЭБУ определяет, в какой момент нужно выполнить задержку открытия/закрытия клапанов. В этом случае двигатель будет оснащен дополнительным устройством – фазовращателем (или гидроуправляемой муфтой), которое проворачивает распредвал для изменения времени открытия. Если датчик Холла (или распредвала) неисправен, то фазы газораспределения не будут меняться.

Принцип работы ДПРВ в дизелях отличается от применения в бензиновых аналогах. В этом случае он фиксирует положение всех поршней в верхней мертвой точке в момент сжатия топливной смеси. Это позволяет точнее определить положение распредвала относительно коленвалу, что стабилизирует работу дизеля и облегчает его запуск.

В конструкцию таких датчиков добавлены дополнительные реперы, положение которых на задающем диске соответствует наклону конкретного клапана в отдельном цилиндре. Устройство таких элементов может отличаться в зависимости от фирменных разработок разных производителей.

Виды планетарных редукторов

  1. Одноступенчатые.
  2. Многоступенчатые.

Первый вариант исполнения намного проще, характеризуется меньшими размерами и обеспечивает более широкие возможности по передаче крутящего момента. Создание нескольких ступеней определяет существенное увеличение размеров конструкции, а диапазон передаточных чисел уменьшается.

По показателю сложности планетарного редуктора выделяют два основных типа:

  1. Простые.
  2. Дифференциальные.

В зависимости от формы корпуса и применяемым внутри элементам выделяют следующие типы:

  1. Волновые.
  2. Конические.
  3. Червячные.
  4. Цилиндрические или колесного типа.

Их применение позволяет передавать вращение между пересекающимися, перекрещивающимися и параллельными валами. 

Храповые механизмы

Храповые механизмы позволяют в широком диапазоне изменять величину периодических перемещений рабочих органов машин. Типы и область применения храповых механизмов разнообразны.

Храповой механизм (рис. 10) состоит из четырех основных звеньев: стойки 1, храповика (зубчатого колеса) 4, рычага 2 и детали 3 с выступом, которая носит название собачки. Храповик со скошенными в одну сторону зубьями насажен на ведомый вал механизма. На одной оси с валом шарнирно закреплен рычаг 2, поворачивающийся (качающейся) под действием приводной штанги 6. На рычаге также шарнирно укреплена собачка, выступ которой имеет форму, соответствующую впадине между зубьями храповика.

Во время работы храпового механизма приходит в движение рычаг 2, Когда он движется вправо, собачка свободно скользит по закругленной части зуба храповика, затем она под действием своей силы тяжести или специальной пружины заскакивает во впадину и, упираясь в следующий зуб, толкает его вперед. В результате этого храповик, а с ним и ведомый вал поворачиваются. Обратный поворот храповика с ведомым валом при холостом ходе рычага с собачкой 3 предотвращается стопорной собачкой 5, шарнирно закрепленной на неподвижной оси и прижатой к храповику пружиной.

Описанный механизм преобразует качательное движение рычага в прерывисто-вращательное движение ведомого вала.

Использует

Он используется, в частности, для кинопленки (нецифровой) в проекторах и, реже, в камерах , для продвижения пленки: пленка должна останавливаться на каждом изображении перед затвором (съемка) или перед лампой. (проекция).

Этот механизм используется в механических счетчиках (пробег автомобиля, расхода воды или газа и т. Д.), Где он гарантирует выравнивание цифр и их наклон при каждом задержке. Он также используется в машинах, осуществляющих передачу продукта с необходимостью времени ожидания, когда он будет введен (что не позволяет система шатун-кривошип). Например, он лежит в основе движений, используемых на упаковочных машинах: продукты загружаются в продовольственный магазин в соответствии с заранее определенным количеством (фаза остановки), затем упаковываются во время движения передачи (фаза движения).

Принципы работы планетарных коробок передач

Изменение передачи зависит от конфигурации размещения функциональных узлов. Значение будет иметь подвижность элемента и направления крутящего момента. Один из трех компонентов (водило, сателлиты, солнечная шестерня) фиксируется в неподвижном положении, а два других вращаются. Для блокировки элементов планетарной коробки передач принцип работы механизма предусматривает подключение системы ленточных тормозов и муфт. Разве что в дифференциальных устройствах с коническими шестернями тормоза и блокировочные муфты отсутствуют.

Понижающая передача может активизироваться по двум схемам. В первом варианте реализуется следующий принцип: останавливается эпицикл, на фоне чего рабочий момент от силового агрегата переправляется на базу солнечной шестерни и убирается с водила. В итоге интенсивность вращения вала будет понижаться, а солнечная шестерня прибавит в частоте работы. В альтернативной схеме блокируется солнечная шестерня устройства, а вращение передается от водила к эпициклу. Результат аналогичный, но с небольшим отличием. Дело в том, что передаточное число в данной рабочей модели будет стремиться к единице.

В процессе повышения передачи тоже может реализовываться несколько рабочих моделей, причем для одной и той же планетарной коробки передач. Принцип действия в простейшей схеме следующий: блокируется эпицикл, а момент вращения переносится с центральной солнечной шестерни и транслируется на сателлиты и водило. В таком режиме механизм работает как повышающий редуктор. В другой конфигурации будет блокироваться шестерня, а момент переправляется от коронной шестерни на водило. Также принцип действия схож с первым вариантом, но есть разница в частоте вращения. При включении заднего хода момент кручения снимется с эпицикла и будет передаваться на солнечную шестерню. При этом водило должно находиться в неподвижном состоянии.

Принцип действия

В некоторых случаях нужно преобразовывать постоянное вращение в прерывистое. Для этого применяется мальтийский механизм, который сегодня получил весьма широкое распространение. Ключевыми особенностями назовем следующие моменты:

  1. Устройство представлено двумя элементами, который находятся в непосредственном взаимодействии.
  2. Основная часть представлена диском со специальными отверстиями. Мальтийский крест выступает в качестве ведомого элемента, которому передается усилие.
  3. Ведущая часть представлена диском со стержнем, а также специальным элементом, за счет которого обеспечивается крест находится в неподвижном состоянии.

Мальтийский механизм характеризуется тем, что имеет большие размеры в сравнении со многими другими. При этом высокий КПД совместим с равномерной работой.

Ключевыми моментами этого привода можно назвать следующее:

  1. Оба элемента должны быть расположены точно относительно друг друга, так как в противном случае есть вероятность повышенного износа.
  2. При производстве изделий должны применяться материалы, характеризующие высокой износостойкостью и прочностью. При этом отметим, что на момент работы не возникает сильного трения, другими словами изделия не нагреваются.
  3. Несмотря на достаточно простую конструкцию, при изготовлении креста и барабана могут возникать серьезные трудности. Даже незначительное отклонение формы станет причиной потери КПД и возникновения других проблем.
  4. На момент передачи вращения осевая нагрузка распространяется неравномерно. Именно поэтому есть вероятность быстрого износа подшипника, на котором происходит фиксация креста и барабана.

При этом встречаются и модификации, которые также подгоняются под определенные условия эксплуатации.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: