Маркировка и характеристики баллонов для сварки

Влияние на процесс

Защитный газ применяемые для сварки оказывают огромное влияние как на сам процесс, так и на результат — качество сварного соединения. Неправильный выбор газов приведёт либо к многочисленным дефектом, либо к ненужному удорожанию процесса.

Приведём несколько примеров:

Применение аргона или гелия для сварки металлоконструкций из Ст3пс. Сварное соединение получится качественным, но затраты необоснованно высокими. Или же другой пример: сварка титанового сплава ВТ9 в среде углекислого газа. В этом случае финансовые затраты будут минимальны, но соединение будет однозначно бракованным и скорее всего даст трещину еще до того, как сварщик завершит работу.

Как использовать?

Итак, вы выбрали газ и объем баллона. Что дальше?

Дальше необходимо разобраться, как баллоны для сварки полуавтоматом  и для газовой сварки. Алгоритм действий аналогичен при сварке полуавтоматом или любым других сварочным агрегатом.

Само собой, перед началом вы должны подготовить металл и подобрать режим сварки. И лишь затем подключать газ к сварочному процессу. Если все подготовительные операции выполнены, подсоедините газовый баллон к сварочному аппарату. Это можно сделать с помощью специального шланга. Подсоединение должно осуществляться через редуктор. Настройте давление газа. Ниже видео, в котором наглядно показано, как это сделать. После этого можно открыть вентиль подачи газа. Делайте это плавно, не совершая резких движений. Подождите 30 секунд и только после этого поджигайте дугу. То же самое необходимо сделать и после сварки. Не закрывайте газ сразу, пусть он подается в зону сварки еще 10-20 секунд.

Отдельный вопрос — это заправка баллонов сварочной смесью. Мы привыкли, что бытовые баллоны с газом необходимо периодически заправлять, вызывая для этого специальную службу. Со сварочными баллонами все проще. Если вы варите дома, то просто приобретайте баллоны небольшого объема, а затем сдавайте их на металлопереработку. Для повторной сварки приобретите новый баллон.

На крупных заводах баллоны могут дополнительно заправляться. Но это уже задача руководства, а не сварщика.

Почему углекислота?

Углекислотный тип сварки стал популярным на заводах и разных предприятиях. Возможно, у вас возникает вопрос чем эта популярность вызвана? Сейчас и выясним.

На самом деле, большого секрета в этом нет. При использовании углекислоты очень низкая вероятность деформации деталей, а это экономия ресурсов. Ведь бракованные детали — это лишние траты, а с помощью защитного газа этого можно избежать.

Ещё этот газ не нуждается в тщательной подготовке металла, соединение всегда аккуратное. Всё что остаётся это убрать лишние шлаки.

Также этот тип сварки можно использовать при работе с тонкими металлами. Как показывает практика, она хорошо подходит для такого материала.

Правда есть один нюанс – использовать ручную дуговую или газовую сварки не рекомендуется. С их помощью получается некачественный шов, поэтому лучше использовать другой метод.

Этот процесс происходит автоматически. Она лучше подходит для этого, чем другие виды сварок, так как результат в разы качественнее. Также у проволоки короткий период плавки, а за счёт этого – углекислотная сварка требует меньше времени для исполнения.

Углекислотная сварка может полностью заменить сварку другого типа – газовую ацетиленовую. Потому что материал, который нужен для плавки дешевле, хоть с его помощью результат получается не хуже.

Основные преимущества

Также при углекислотной сварке нет термического воздействия на металл из-за чего детали не нагреваются. А это хорошо влияет на шов, и он получается прочным и красивым.

По сравнению с этим типом при углекислотной можно работать при любом положении в пространстве, а также намного лучше виден процесс, что упрощает наблюдение за ним.

Ещё скорость процесса в разы выше, чем при других методах, так как проволока плавится очень быстро, поэтому производительность очень высокая.

В отличие от других методов, даже той же ручной дуговой, процесс автоматизирован, а значит сварщик прикладывает намного меньше усилий.

Этот метод подходит если сварщику не нужно передвигаться на большие расстояния и есть возможность наблюдать за сваркой от начала и до конца.

При сварке металла, где необходимо много небольших швов очень хорошо подойдёт этот метод. Его часто используют в мелких домашних работах, к примеру при сварке ворот. Полуавтомат с углекислотой, поэтому часто можно встретить в ремонтных пунктах.

И цена такого ремонта будет стоить недорого. В некоторых предприятиях ручная дуговая сварка уже вытеснена углекислотной.

Правила хранения газовых баллончиков

Чтобы обеспечить высокую начальную скорость стрельбы и экономный расход углекислоты, лучше всего стрелять из оружия при температуре не меньше +6°С.

Основные правила хранения:

  • нельзя нагревать баллончик до температуры выше +55°С;
  • углекислота находится под давлением, во время нагревания есть опасность взрыва;
  • место хранения должно проветриваться;
  • место хранения должно быть недоступно для маленьких детей;
  • применять исключительно по назначению;
  • место должно быть защищено от прямых солнечных лучей.

Любая пневматика на углекислом газе потребует извлечения баллона после стрельбы. Какое количество времени пистолет может быть в заряженном состоянии, будет зависеть от модели и компании-изготовителя. По разной информации держать заряженным оружие можно 2-4 часа, но не больше суток. Многие держат баллон несколько месяцев, этого не стоит делать, так как портятся резиновые уплотнители в пистолете. Помимо того, перед тем как достать баллончик, нужно его полностью отстрелять вхолостую, иначе газ при выкрутке повредит прокладки.

Можно ли самостоятельно смешивать газы?

Технически это возможно, для этого необходимо установить расходомеры-ротаметры на баллонах и по ним отрегулировать редуктором для полуавтомата подачу каждого газа в соответствии с требуемой пропорцией. На каждый литр основного газа будет расходоваться пропорциональная доля дополнительного. На практике состав получаемой смеси будет нестабильным ввиду недостаточной точности расходомеров и неравномерного снижения давления в разных баллонах по мере расходования газа. Кроме того, сварочный редуктор будет периодически влиять на состав смеси. Какой еще способ применяется?

Надежный метод получения защитного сварочного газа

При работе с ответственными соединениями лучше применять готовые сварочные смеси в баллонах. Они готовятся на заводе по производству промышленных газов в специальных смесителях и равномерно перемешиваются.

Заправка газовых баллонов для сварки на таких предприятиях проводится с точным контролем количества и состава смеси. В этом случае состав смеси точен по пропорциям и постоянен во времени, в отличие от метода смешивания газов на рабочем месте с помощью редуктора для сварочной смеси. Состав смесей нормируется соответствующим ГОСТ и стабилен от партии к партии.

Типы сварочных смесей

Аргон. Для аргонодуговой сварки применяется аргон. Этот газ используется для сваривания заготовок из высоколегированных сталей, меди, алюминия, чугуна, титана, серебра.

Углекислый газ. Для сваривания заготовок из нержавейки применяется баллонная сварочная смесь на основе углекислоты. Например, при добавлении водорода в газовую смесь сварочный процесс значительно ускоряется. Кислород, водород в углекислотном баллоне составляет от 10 процентов. При выполнении плазменной резки для повышения мощности в смеси добавляется 25-45 процентов водорода.

Азот. Этот химический элемент используется в газовых смесях для соединения заготовок из меди, серебра, их сплавов, повышает коррозионную стойкость, уменьшает наличие железа в нагаре. Но при использовании азотных смесей электроды ТИГ изнашиваются быстрее.

Для выполнения МИГ, МАГ сварки используются газовые двухкомпонентные смеси (5%-кислород), трехкомпонентные смеси (кислород-2,5%, СО2 -20%, аргон-75%). Такой состав предоставляет возможность избегать выгорания, разбрызгивания легирующих компонентов.

Преимущества использования баллонных сварочных смесей

  • Улучшенные рабочие условия
  • Высокая стабильность
  • Сведение к минимуму последующей обработки свариваемых изделий
  • Экономия расходных материалов
  • Повышенное качество сварки
  • Общая стоимость сварочных работ значительно ниже

Газовые баллоны и их виды

Пропановые баллоны

Такие баллоны используются для хранения пропана. Однако внутри находится не чистый пропан, а смесь этого газа с бутаном. Стоит отметить, что соотношение газов меняется исходя из того, какое время года. Таким образом, предотвращается сильная конденсация в баллоне.

В продаже пропановые баллоны легко отличить по красному цвету. Они используются во время фиксации рубероида, крепления натяжного потолка, а также для газовой сварки и подсоединения тепловой пушки либо обогревателя.

Кислородные баллоны

Они представлены в синем цвете. Несмотря на то, что кислород является негорючим газом, он способен поддерживать горение. Его применяют в процессе газовой сварки и резке.

Очищенный кислород используется в медицине. Для таких же целей применять технический кислород нельзя.

Ацетиленовые баллоны

Баллоны такого вида требуются для ацетиленовой сварки. В продаже ацетиленовые баллоны встречаются в белом цвете.

Аргоновые баллоны

Аргоновые баллоны представлены в виде емкостей серого цвета. Они нашли широкое применение в аргоновой  TIG сварке, а также плазменной резки.

Углекислотные баллоны

Баллоны черного цвета. Используются они при полуавтоматической сварке MAG. Нередко с их помощью напитки насыщают углекислым газом.

Гелевые баллоны

Такие баллоны покрашены в коричневый цвет. Гелевые баллоны подходят для наполнения воздушных шариков. Кроме этого, они применяются во время сварки и при подаче газа в системы охлаждения томографов.

Азотные баллоны

Применяются азотные баллоны в медицине. Они оформлены в черном цвете. Помимо этого, с помощью азотных баллонов осуществляется быстрая заморозка продуктов в пищевой промышленности.

Описание смесей и их свойств

Для проведения сварочных работ используют смеси 2 или 3 газов, которые получаются с помощью смесителя с регулировкой подачи или поставляются в готовом виде в баллоне. Применение защитной атмосферы позволяет перейти от капельного переноса металла в ванну расплава к струйному без риска разбрызгивания потока. В результате увеличивается скорость проведения работ без снижения качества стыка.

Рекомендуем к прочтению Описание метода радиографической дефектоскопии

Распространенные виды смесей для применения в полуавтоматах MIG-MAG:

  • 98%Ar+2%CO2 – используют для сварки нержавеющих сталей, оцинкованных заготовок или соединения деталей из меди с железными элементами;
  • 92%Ar+8%CO2 – применяют при ускоренной сварке листов стали толщиной от 1 до 5 м;
  • 80%Ar+20%CO2 – необходима при наплавке конструкционных или сварке нержавеющих сталей с использованием проволоки из порошкового композита;
  • 75%Ar+25%CO2 – используют при сварке конструкций с увеличенным количеством вертикальных стыков;
  • 82%Ar+18% углекислоты – применяют при наплавке высокопрочных сталей.

Аргон с кислородом

В состав материала входят от 1 до 5% кислорода, который позволяет повысить текучесть расплава в ванне и обеспечивает подачу жидкого металла электрода или присадочной проволоки мелкими каплями. Смесь применяют при изготовлении конструкций из углеродистых или легированных сталей.


Аргон с кислородом позволяет повысить текучесть расплава.

Кислород и CO2

Смесь ухудшает адгезию капель расплава, попавших на поверхности заготовок, и улучшает внешний вид сварного шва. Допускается соединение деталей с кромками, покрытыми ржавчиной. Защитный газ снижает риск образования пор в металле стыка. Введение кислорода позволяет увеличить температуру в зоне сварки и повысить производительность. Но следует учитывать окисление металла: попадающие в стык примеси ухудшают механические характеристики. При сварке в воздух выделяется дым от сгоревшего металла, негативно влияющий на дыхательные органы.

Водород и аргон

Смесь позволяет улучшить условия наплавки металла на поверхности, используется как защитная атмосфера при сварке нержавеющих сталей и сплавов на основе никеля. Концентрация водорода в среде не превышает 3%, что предотвращает воспламенение газа. В составе смеси допускается небольшое содержание азота и кислорода. Плотность материала при нормальных условиях составляет 1,615 кг/м³. Смесь не оказывает негативного влияния на окружающую среду, по химическим характеристикам близка к инертным газам.


Водород и аргон улучшают условия наплавки металла.

Аргон с гелием

Это универсальная смесь, рассчитанная на сварку конструкционных сталей или цветных металлов и их сплавов (например соединений на базе меди, отличающихся повышенной теплопроводностью). Газ для сварки повышает мощность дугового разряда при неизменной силе тока и напряжении, может использоваться при соединении элементов из хромо-никелевых сталей и алюминиевых сплавов.

Конструкция газовых баллонов для сварки

Основным условием государственного стандарта № 949 для газосварочных баллонов для горючих газов, инертных газов и кислорода выступает изготовление из стальных бесшовных труб. Такое условие способствует значительному уменьшению риска разрыва баллона от трещины или коррозии сварного шва. Баллоны имеют форму цилиндра с конусообразной узкой горловину и выпуклым наружу днищем.

Горловина газового баллона имеет резьбовое отверстие, предназначенное для ввинчивания в него запорной арматуры. В качестве запорной арматуры применяется вентиль, открытие и закрытие которого регулирует выход газа наружу. Применяемые в конструкциях газовых баллонов имеют некоторое различие, для баллонов, предназначенных для транспортировки горючих газов, используются вентили одной конструкции, а для кислородных баллонов совершенно другой.

Для предохранения вентиля от несанкционированного открытия, защиты его при транспортировке на вентиль в транспортном положении надевается специальный предохранительный колпак, имеющий резьбу и накручиваемый на специальное, насаженное на горловину баллона кольцо.

Устойчивость баллонов при их вертикальном расположении обеспечивается насаженным, на дно баллона массивном металлическом башмаке, имеющим квадратную форму.

Виды баллонов для сварки газопламенным способом и полуавтоматической сваркой

Различить баллоны для хранения газов довольно просто, они легко различимы визуально и имеют буквенно-цветовую маркировку. Такая раскраска баллонов позволяет безошибочно определить наполнение баллона, а надпись с названием газа дополняет информацию, зашифрованную в цветовом коде.

Самыми распространенными сегодня выступают газовые баллоны, предназначенные для хранения кислорода. Применяемые как в промышленности, так и в медицине газовые баллоны, с кислородом окрашиваются в синий цвет с белой каймой вокруг не окрашиваемой части баллона, где производится клеймение паспортных данных. Надпись на баллоне наносится белой краской. Кроме, надписи «Кислород» на баллоне может быть дополнительная надпись с предупреждением относительно опасности попадания масла в кислород. В современном мире все чаще кроме паспортных данных и ярлыка о заправке содержимого на корпус баллона может наноситься наклейка на основе самоклеющейся ленты с маркировкой о типе и марке газа.

Ацетиленовые газосварочные баллоны для сварки в отличие от остальных видов газового баллонного оборудования имеют специфическое наполнение. Имея стандартное наполнение в 40 литров такие баллоны, заполняются специальной массой, имеющей глубокую пористую структуру. Такое наполнение имеет специальную цель, для безопасного хранения ацетилена и увеличения его объема в баллоне наполнение пропитывается ацетоном, который обеспечивает растворение ацетилена. Так, расчетным выступает показатель 200-300 грамм ацетона на 1 кг содержимого пористой массы. Такая пропитка обеспечивает равномерное впитывание ацетилена в поры и снижает давление до приемлемых 1,9 МПа. Принято считать, что 1 литр ацетона выступает растворителем для 23 литров ацетилена

При пользовании баллоном с ацетиленом важно обеспечить правильную подачу газа, не более 1700 литров в час, для его экономного расходования. Ацетиленовые баллоны имеют белый цвет окраски с соответствующей надписью на корпусе

Газовые баллоны, наполненные сжатым водородом, имеют темно-зеленую краску окрашивания.

Для пропановых баллонов для сварки газом используется стандартный красный цвет окраски с надписью черным цветом. Следует отметить, что пропановые баллоны, это единственный вид баллонов, корпус которого может быть выполнен из листового металла и соединен сварным швом.

Применяемый в качестве инертного газа при сварке полуавтоматом аргон транспортируется в баллонах черного цвета, а вот для азота применяется маркировка в виде черной окраски баллона с нанесенной на него поперечной полосой коричневой краски.

Баллоны, заполненные гелием, имеют коричневый цвет маркировки корпуса.

Углекислота или сжатый воздух транспортируются в баллонах, имеющих черный цвет и отличающиеся друг от друга, только наружной буквенной маркировкой.

Вместо заключения

Защитные газы, применяемые при газовой или полуавтоматической сварке, выведут вашу работу на новый уровень. Вы удивитесь тому, насколько улучшится надежность готовых сварных швов. Вы также сможете ускорить свою работу без ущерба для качества. Тем более, в выборе защитного газа нет ничего сложного. Ведь здесь нет десятков марок, как у электродов, так что можно экспериментировать.

Вы также можете использовать не только один газ, но и смесь для сварки полуавтоматом. Так вы сделаете свои выводы и решите для себя, какой газ больше подходит для выполнения ваших работ. Желаем удачи!

Технологические особенности сварки металлов с привлечением инертных газов предусматривают использование специальных газовых смесей. Благодаря им качество сварочного шва существенно возрастает. Газовые смеси для сварки изготавливаются на основе таких известных составляющих, как гелий, кислород, аргон и углекислота.

Ацетиленовые баллоны

Питание постов газовой сварки и резки ацетиленом от ацетиленовых генераторов связано с рядом неудобств, поэтому в настоящее время большое распространение получило питание постов непосредственно от ацетиленовых баллонов. Они имеют те же размеры, что и кислородный. Ацетиленовый баллон заполняют пористой массой из активированного древесного угля (290- 320 г на 1 дм3 вместимости баллона) или смесь угля, пемзы и инфузорной земли. Массу в баллоне пропитывают ацетоном (225-300 г на 1 дм3 вместимости баллона), в котором хорошо растворяется . Ацетилен, растворяясь в ацетоне и находясь в порах пористой массы, становится взрывобезопасным и его можно хранить в баллоне под давлением 2,5-3 МПа. Пористая масса должна иметь максимальную пористость, вести себя инертно по отношению к металлу баллона, ацетилену и ацетону, не давать в процессе эксплуатации. В настоящее время в качестве пористой массы применяют активированный древесный дробленый уголь (ГОСТ 6217-74) с размером зерен от 1 до 3,5 мм.Ацетон (химическая формула СН3СОСН3) является одним из лучших растворителей ацетилена, он пропитывает пористую массу и при наполнении баллонов ацетиленом растворяет его. Ацетилен, доставляемый потребителям в баллонах, называется растворенным ацетиленом.

Рисунок 2 — Ацетиленовый баллон

Максимальное давление ацетилена в баллоне составляет 3 МПа. Давление ацетилена в полностью наполненном баллоне изменяется при изменении температуры:

Температура, °С -5 5 10 15 20 25 30 35 40
Давление, МПа 1,34 1,4 1,5 1,65 1,8 1,9 2,15 2,35 2,6 3,0

Давление наполненных баллонов не должно превышать при 20°С 1,9 МПа.

При открывании вентиля баллона ацетилен выделяется из ацетона и в виде газа поступает через редуктор и шланг в горелку или резак. Ацетон остается в порах пористой массы и растворяет новые порции ацетилена при последующих наполнениях баллона газом. Для уменьшения потерь ацетона во время работы необходимо ацетиленовые баллоны держать в вертикальном положении. При нормальном атмосферном давлении и 20°С в 1 кг (л) ацетона растворяется 28 кг (л) ацетилена. Растворимость ацетилена в ацетоне увеличивается примерно прямо пропорционально с увеличением давления и уменьшается с понижением температуры.

Для полного использования емкости баллона порожние ацетиленовые баллоны рекомендуется хранить в горизонтальном положении, так как это способствует равномерному распределению ацетона по всему объему, и с плотно закрытыми вентилями. При отборе ацетилена из баллона он уносит часть ацетона в виде паров. Это уменьшает количество ацетилена в баллоне при следующих наполнениях. Для уменьшения потерь ацетона из баллона ацетилен необходимо отбирать со скоростью не более 1700 дм3/ч.

Для определения количества ацетилена баллон взвешивают до и после наполнения газом и по разнице определяют количество находящегося в баллоне ацетилена в кг.

Масса пустого ацетиленового баллона складывается из массы самого баллона, пористой массы и ацетона. При отборе ацетилена из баллона вместе с газом расходуется 30- 40 г ацетона на 1 м3 ацетилена. При отборе ацетилена из баллона необходимо следить за тем, чтобы в баллоне остаточное давление было не менее 0,05-0,1 МПа.

Использование ацетиленовых баллонов вместо ацетиленовых генераторов дает ряд преимуществ: компактность и простота обслуживания сварочной установки, безопасность и улучшение условий работы, повышение производительности труда газосварщиков. Кроме того, растворенный ацетилен содержит меньшее количество посторонних примесей, чем ацетилен, получаемый из ацетиленовых генераторов.

Причинами взрыва ацетиленовых баллонов могут быть резкие толчки и удары, сильный нагрев (свыше 40°С).

Переносной углекислотный огнетушитель. Устройство и принцип действия.

Переносной (ручной) углекислотный огнетушитель — это устройство с полной массой не более 20 кг, конструктивное исполнение которого обеспечивает возможность его переноски и применения одним человеком.

Предназначены для защиты транспортных средств (сельскохозяйственных машин, автомобилей, электрических машин), а также для применения в бытовых условиях в качестве средства тушения пожаров электрооборудования (электродвигателей, электропроводки), находящегося под напряжением.

Сравнительно малый вес ОУ-1, ОУ-2 (порядка 4-8 кг) обеспечивают возможность применение огнетушителей женщинами и подростками, что имеет особое значение при пожарах в квартирах.

В настоящее время в эксплуатации находятся переносные углекислотные огнетушители вместимостью корпуса 2, 3, 5, 8 литров. ОУ-1, ОУ-2, ОУ-3, ОУ-5, ОУ-8 Огнетушители отличаются друг от друга только объемом корпуса и размерами раструба.

Огнетушитель представляет собой прочный металлический сосуд (баллон) (1) в горловину которого ввернуто специальное запорно-пусковое устройство (ЗПУ) с сифонной трубкой (3). Сифонная трубка имеющая косой срез под 45° в нижней части и не доходящая до дна баллона на 3—4 мм, обеспечивает практически полный выход огнетушащего заряда (углекислоты) из огнетушителя.

К выходному отверстию ЗПУ присоединяется «распылитель», состоящий из раструба (ОУ-1), из выкидной трубки и раструба (ОУ-2 — ОУ-3), из резинового шланга и раструба (ОУ-5 — ОУ-8).

ЗПУ предназначено для приведения огнетушителя в действие, прерывания и вновь возобновления подачи углекислотного заряда на очаг горения.

После удаления предохранительного фиксатора (чеки) и нажатия кистью руки на верхний рычаг (6), открывается клапан и огнетушащее вещество (ОТВ) находящееся в баллоне под избыточным давлением через сифонную трубку, ЗПУ и распылитель (раструб) подается на очаг горения. Для прекращения подачи ОТВ, верхний рычаг возвращают в исходное положение.

Ручка—прихват (8) на шланге (7) защищает руку оператора от переохлаждения, т.к. температура на поверхности раструба (4) понижается до минус 78 °С.

Интенсивность выхода углекислоты может изменяться в достаточно широких пределах и сильно зависит от температуры окружающей среды: снижаясь при отрицательной температуре и возрастая при положительной температуре.

Огнетушители ОУ-1, ОУ-2 рекомендованы для тушения пожаров электроустановок под напряжением до 1000 В с расстояния не менее 1 м от раструба огнетушителя до токоведущих частей.

Огнетушители ОУ-3 — ОУ-8 рекомендованы для тушения пожаров электроустановок под напряжением до 10 000 В с расстояния не менее 2 м от раструба огнетушителя до токоведущих частей.

Правила применения, эксплуатации и способы приведения огнетушителя в действие указаны на этикетке, помещенной на баллоне огнетушителя, в руководстве по эксплуатации и в памятке Правила работы с углекислотным огнетушителем

Основные параметры переносных (ручных) огнетушителей приведены в таблице.

Наименование параметров ОУ-2 ОУ-3 ОУ-5 ОУ-8
Вместимость баллона, л 2 3 5 8
Рабочее давление в баллоне огнетушителя при t=20°C, МПа (кгс/ см2) 6 (58) 6 (58) 6 (58) 6 (58)
Продолжительность подачи огнетушащего вещества, минимальная (при t=20°C), сек. 8 10 10 10
Длина огнетушащей струи минимальная (при t=20±5 °C), м 1,5 3,0 3,0 3,0
Масса огнетушащего вещества, кг 1,4 2,1 3,5 5,6
Огнетушащая способность по тушению модельного очага пожара по классу «В» 10В 13В 34В 55В
Масса огнетушителя, полная, кг, не более 6,6 8,4 13,5 18,3
Длина шланга с раструбом, м, не менее 0,5 1
Продолжительность приведения огнетушителя в действие, сек., не более 5 5 5 5
Срок службы, лет, не менее 10 10 10 10
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: