Кубическая гранецентрированная решетка: координационное число, структура и геометрия

Ионная связь кристаллических решеток.

В узлах кристалла находятся ионы, из-за этого тут превалируют электростатические силы, вследствие чего в структуре должна быть электрическую нейтральность. У каждого типа ионной решетки должно быть свое координационное число. Например, молекула хлорида натрия: Na + , Cl – . Каждый ион Na + окружен 6-тью ионами Cl – , поэтому координационное число равно 6. И вокруг иона Cl – тоже 6 ионов натрия, поэтому тут в молекуле присутствует координация 6:6.

Рассмотрим другой пример, хлорид цезия CsCl. Ион цезия большой, по сравнению с ионом натрия, поэтому его окружает уже не 6 Cl–ионов, а 8. Поэтому координационное число равно 8.

Вещества с таким типом решетки обладают высокой твердостью, они тугоплавки и малолетучи. Электричество проводят не только растворы, но и расплавы (т.к. ионные соединения диссоциируют в полярных жидкостях (вода).

Ионные кристаллы обладают повышенной хрупкостью, т.к. сдвиг в решетке кристалла (даже незначительный) приводит к тому, что одноименно заряженные ионы начинают отталкиваться друг от друга, и связи рвутся, образуются трещины и расколы.

Периодическая таблица и металлы

В XIX веке благодаря своему блестящему уму и многим годам труда Дмитрий Иванович Менделеев составил таблицу, собрав в нее все известные на то время химические элементы. Каждому из них в таблице отведено определенное положение в соответствии с числом протонов в атомном ядре. Вся таблица делится на 7 периодов (горизонтальные строки) и 8 групп (вертикальные строки). Чем больше период, тем больше радиус атома соответствующего элемента, и тем на более высоких орбиталях расположены его валентные электроны. Наоборот, чем старше группа (движение по таблице слева направо), тем больше валентных электронов находится на последней орбитали и тем меньше радиус атома.

Любой элемент таблицы можно условно отнести либо к металлам, либо к неметаллам. Металлы расположены по левую сторону от диагонали бор (B) – полоний (Po). Если взглянуть на таблицу, то можно сразу понять, что количество металлов в несколько раз превышает число неметаллов.

Читать также: Самодельный вискозиметр для краски

Общее понятие о металлах

«Химия. 9 класс» — это учебник, по которому проходят обучение школьники. Именно в нем подробно изучаются металлы. Рассмотрению их физических и химических свойств отведена большая глава, ведь разнообразие их чрезвычайно велико.

Именно с этого возраста рекомендуют давать детям представление о данных атомах и их свойствах, ведь подростки уже вполне могут оценить значение подобных знаний. Они прекрасно видят, что окружающее их разнообразие предметов, машин и прочих вещей имеет в своей основе как раз металлическую природу.

Что же такое металл? С точки зрения химии, к данным атомам принято относить те, что имеют:

  • малое число электронов на внешнем уровне;
  • проявляют сильные восстановительные свойства;
  • имеют большой атомный радиус;
  • как простые вещества обладают рядом специфических физических свойств.

Основу знаний об этих веществах можно получить, если рассмотреть атомно-кристаллическое строение металлов. Именно оно объясняет все особенности и свойства данных соединений.

В периодической системе для металлов отводится большая часть всей таблицы, ведь они образуют все побочные подгруппы и главные с первой по третью группу. Поэтому их численное превосходство очевидно. Самыми распространенными являются:

  • кальций;
  • натрий;
  • титан;
  • железо;
  • магний;
  • алюминий;
  • калий.

Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет именно кристаллическое строение металлов.

Смотреть галерею

Виды

В науке выделяют 14 видов элементарных ячеек решеток, обладающих уникальной геометрией. Впервые их описал французский физик Огюст Бравэ в 1848 г. Этого ученого считают основателем кристаллографии.

Данные типы элементарных структур кристаллической решетки группируют в 7 категорий, называемых сингониями, в зависимости от соотношения длин сторон и равенства углов:

  • кубическая;
  • тетрагональная;
  • орторомбическая;
  • ромбоэдрическая;
  • шестиугольная;
  • триклинная.

Наиболее простой и распространенной в природе из них является первая категория, которая в свою очередь делится на 3 типа решеток:

  • Простая кубическая. Все частицы (а ими могут быть атомы, электрически заряженные частицы или молекулы) находятся в вершинах куба. Эти частицы идентичны. Каждой ячейке принадлежит 1 атом (8 вершин × 1/8 атома = 1).
  • Объемноцентрированная кубическая. Отличается от предыдущей модели тем, что в центре куба находится еще одна частица. К каждой ячейке относится по 2 атома вещества.
  • Гранецентрированная кубическая. Частицы содержатся в вершинах элементарной ячейки, а также в центре всех граней. Каждая из ячеек насчитывает по 4 атома.

Варианты и обобщения

Наиболее эффективный способ упаковать круги разного размера не так уж очевиден

См. также: Задачи упаковки

Пространства иных размерностей

Можно рассмотреть аналогичную задачу плотной упаковки гиперсфер (или окружностей) в евклидовом пространстве размерности, отличной от 3. В частности, двумерном евклидовом пространстве наилучшим заполнением является размещение центров кругов в вершинах паркета, образованного правильными шестиугольниками, в котором каждый круг окружён шестью другими. Именно из таких слоёв построены ГЦК и ГП (ГПУ) упаковки. Плотность данной упаковки:

π23≈,9069{\displaystyle {\frac {\pi }{2{\sqrt {3}}}}\approx 0,9069}.

Оптимальная упаковка кругов на плоскости

В 1940 году было доказано, что данная упаковка является самой плотной.

В 2016 году украинский математик Марина Вязовская решила задачу об упаковке шаров в пространствах старших размерностей — восьмимерном и, в соавторстве, в 24-мерном.
Решение Вязовской восьмимерного случая занимает всего 23 страницы и является «ошеломляюще простым» по сравнению с 300-страничным текстом и использованием 50 000 строчек программного кода при изложении доказательства гипотезы Кеплера для трёхмерного пространства.

Наивысшая плотность известна только для размерностей пространства 1 (укладка вплотную), 2 (треугольная решётка), 3 (ГЦК, ГП (ГПУ) и другие упаковки, построенные из слоёв треугольной решётки), 8 (решётка E8) и 24 (решётка Лича).

Заполнение оставшегося пространства

ГЦК и ГП (ГПУ) упаковки являются наиболее плотными известными упаковками одинаковых сфер с максимальной симметрией (наименьшей единицей повторения).
Более плотные упаковки шаров известны, но в них используются сферы разных диаметров.
Для упаковок с плотностью 1, заполняющих пространство полностью, требуется несферические тела, такие как соты, либо бесконечное количество сфер в конечном объёме (сетка Аполлония).

Соты

Если заменить каждую точку соприкосновения двух сфер ребром, соединяющим центры соприкасающихся сфер, получим тетраэдры и октаэдры с равными длинами сторон.
ГЦК укладка даёт .
ГП (ГПУ) укладка даёт .
Если, вместо этого, любая сфера расширяется точками, которые ближе к ней, чем к любой другой сфере, получаются двойственные соты — для ГЦК и для ГП.

Сферические пузырьки в мыльной воде по схеме ГЦК или ГП (ГПУ), когда вода между пузырьками высыхает, также принимают форму или . Однако такие ГЦК или ГП (ГПУ) пены с очень малым содержанием жидкости нестабильны, поскольку для них не выполняется . более устойчивы, имея меньшую межграневую энергию при малом количестве жидкости.

Кубическая гранецентрированная решетка

Кубическая гранецентрированная решетка является основой металлов: алюминия, железа ( у-железа), кобальта, родия, палладия, платины, меди, серебра, золота, свинца и некоторых других металлов и редкоземельных элементов. Гексагональная плотноупакованная решетка является основой металлов: бериллия, магния, кадмия, таллия.

Кристаллическая решетка.| Структура льда.

Кубическую гранецентрированную решетку имеет, например, медь, кубическую объемноцентрированную — железо, гексагональную — магний.

Основные виды элементарных ячеек кристаллических решеток металлов.

В кубической гранецентрированной решетке К12 ( рис. 18, в и 19, б) число атомов равно четырем: 1 / 8 — 8 1 атом от числа атомов, расположенных в вершинах куба и плюс V2 — 6 3 атома от числа атомов, расположенных в центре граней куба. Кубическую гранецентриро-ванную решетку имеют Fev, Ni, Al, Cop и другие металлы.

Основные виды элементарных ячеек кристаллических решеток металлов.

В кубической гранецентрированной решетке К12 ( рис. 18, в и 19, б) число атомов равно четырем: 1 / 8 — 8 1 атом от числа атомов, расположенных в вершинах куба и плюс 1 / 2 — 6 3 атома от числа атомов, расположенных в центре граней куба. Кубическую гранецентриро-ванную решетку имеют Fev, Ni, Al, Cop и другие металлы.

В кубической гранецентрированной решетке ( рис. 2) в восьми углах и шести центрах граней куба находятся атомы одного и того же металла, связанные между собой металлическими связями.

В кубической гранецентрированной решетке базисные векторы прямой решетки выбираются в виде ai 2 — 2о ( 1, I, 0) и аналогично a2 и a3; здесь а — межатомное расстояние.

В кубической гранецентрированной решетке ( At) атомы располагаются по вершинам элементарной ячейки и в центрах ее граней ( фиг. Каждый атом в этой решетке окружен двенадцатью ближайшими соседями, располагающимися на одинаковых расстояниях, равных а / / — 2 ( 0 707 а), где а — ребро элементарной ячейки. Вторые ближайшие соседи ( в данной решетке их шесть) располагаются на значительно больших расстояниях, равных а. Рассматриваемая структура содержит два типа пустот ( междоузлий), в которых могут располагаться более мелкие атомы других элементов. Наибольшие междоузлия, или пустоты, находятся в центре куба и посредине его ребер, как показано на фиг.

В кубической гранецентрированной решетке ( см. рис. 61) возникают занятые атомами дополнительные промежуточные плоскости ( 200) и ( 220), О.

В кубической гранецентрированной решетке ( Ai) атомы располагаются по вершинам элементарной ячейки и в центрах ее граней ( фиг. Каждый атом в этой решетке окружен двенадцатью ближайшими соседями, располагающимися на одинаковых расстояниях, равных а / [ / — 2 — ( 0 707 а), где а — ребро элементарной ячейки. Вторые ближайшие соседи ( в данной решетке их шесть) располагаются на значительно больших расстояниях, равных а. Рассматриваемая структура содержит два типа пустот ( междоузлий), в которых могут располагаться более мелкие атомы других элементов. Наибольшие междоузлия, или пустоты, находятся в центре куба и посредине его ребер, как показано на фиг.

В кубической гранецентрированной решетке нитрида Mo2N атомы азота расположены в октаэдрических пустотах.

Расчеты для кубической гранецентрированной решетки, составленной из кластеров Сбо, показывают, что 8 ближайших соседей пробного кластера взаимодействуют с ним почти оптимальным образом ( т.е. контакт осуществляется через шестиугольники) так, что энергия взаимодействия составляет 28 кДж / моль, а расстояние между центрами — 0 983 нм.

Сплавы имеют кубическую гранецентрированную решетку, параметр которой проходит через минимум при — 60 ат. В этой же точке минимальна скорость суммарного превращения этилена.

Кубическая гранецентрированная решетка

Алюминий является трехвалентным растворителем и имеет кубическую гранецентрированную решетку. Первая зона Брил-люэна у алюминия может вместить только два электрона на атом, и поэтому она должна перекрываться поверхностью Ферми. Однако, как показал Харрисон , степень перекрытия может быть различной, если исходить из сферической формы поверхности Ферми, характерной для свободных электронов. Наличие такого перекрытия у чистого алюминия, очевидно, весьма незначительно отражается на периоде решетки при образовании сплавов.  

Медь и золото, кристаллизующиеся в кубической гранецентрированной решетке, образуют между собой при повышенных температурах и закалке непрерывный ряд твердых растворов.  

Медь и золото, кристаллизующиеся в кубической гранецентрированной решетке, образуют между собой при повышенных температурах и закалке непрерывный ряд твердых растворов. При отжиге происходит процесс упорядочения в распределении атомов золота и меди в кристаллической структуре, причем степень упорядочения будет наибольшей для атомных соотношений Си: Аи 3: 1 и Си: Аи 1: 1, отвечающих соединениям Cu3Au и CuAu. Поскольку каждый атом в вершине куба принадлежит одновременно восьми соседним ячейкам, на данную ячейку приходится / 8 атома ill.  

Рассмотрим увеличение концентрации свободных электронов в кубической гранецентрированной решетке ограниченного а-твердого раствора при добавлении элемента с более высоким номером группы периодической системы по сравнению с растворителем.  

Гексагональная плотнейшая упаковка. Пример. Mg ( a 3 22. с 5 23 А.  

Стронций, подобно кальцию, кристаллизуется в кубической гранецентрированной решетке, а 6 05 А.  

Стронций, подобно кальцию, кристаллизуется в кубической гранецентрированной решетке, а – 6 05 А.  

Стронций, подобно кальцию, кристаллизуется в кубической гранецентрированной решетке, а – 6 05 А.  

Ковкость уменьшается при переходе от кристаллов с кубической гранецентрированной решеткой к металлам с центрированной кубической и гексагональной решетками. Условия, определяющие образование или изменение кристаллической структуры, сильно влияют на ковкость металлов или сплавов. До определенной температуры ковкость растет за счет ослабления связи между кристалликами, а после достижения допустимой максимальной температуры ковкость уменьшается – металлы становятся хрупкими. Это связано с образованием окисных пленок между кристаллами.  

Эта формула строго справедлива для кристаллов с кубической гранецентрированной решеткой, однако при применении ее для кристаллов с другими типами решеток погрешность незначительна. Следует учитывать, что такого типа расчеты применимы для монокристаллов. Обычно же имеют дело с поликристаллическими сростками.  

В гальванических сплавах Си-Sn наряду с кубической гранецентрированной решеткой меди и тетрагональной решеткой олова обнаружены еще две промежуточные фазы. Рассмотрим более подробно несколько систем.  

Структура фтористого кальция показана на рис. 10.4. Это кубическая гранецентрированная решетка.  

СМ) 6 атомы железа расположены в узлах кубической гранецентрированной решетки. На рис. 22.5 атомы Fe ( II) представлены заштрихованными кружками, а атомы Fe ( III) – светлыми. На рис. а все атомы железа находятся в трехвалентном состоянии; на рис. б половина атомов – это Fe ( II), а другая половина – Fe ( III); атомы щелочных металлов обеспечивают электронейтралыюсть соединения. Они расположены в центрах чередующихся малых кубов; предполагается, что в гидратированпых соединениях молекулы воды также могут располагаться в пустотах основной сетки. Литий и цезий, представляющие собой соответственно очень малый и очень большой ионы, не дают соединений, имеющих такую структуру. На рис. в все атомы железа находятся в двухвалентном состоянии, и внутри каждого малого куба находится атом щелочного металла. Группы CN располагаются между атомами металла вдоль сплошных линий на рис. 22.5, так что каждый атом переходного металла находится в центре октаэдра из 6 атомов С или 6 атомов N. Таким образом, в целом комплекс состава M / M ( CN) 6 образует простую 6-связанную трехмерную сетку.  

Первая зона ник называется первой зоной Бриллюэна Бриллюэна, симметрич -, х..  

На рис. 2.6 показана первая зона Бриллюэна для кубической гранецентрированной решетки.  

Гранецентрированная кубическая решетка

Кристаллизуется в гранецентрированной кубической решетке. Обладает высокой электрической проводностью и теплопроводностью, исключительно пластичен.  

Кристаллизуется в гранецентрированной кубической решетке. Обладает высокой электрической проводимостью и теплопроводностью, исключительно пластичен.  

Например, гранецентрированной кубической решетке принадлежат только четыре атома, а не 14, как может показаться на первый взгляд.  

Металлы с гранецентрированной кубической решеткой ( медь, никель, алюминий, аустенитные стали с высоким содержанием никеля) сохраняют свою пластичность при температуре жидкого кислорода. Металлы с объемно центрированной решеткой ( углеродистые стали, магний, вольфрам и др.) становятся в этих условиях хрупкими.  

Металлы с гранецентрированной кубической решеткой ( медь, алюминий, никель, свинец, – железо, аустенитные стали) с понижением температуры сохраняют пластичность, у них увеличиваются пределы текучести и прочности, повышается твердость и уменьшается ударная вязкость. Металлы с объемноцентрированной кубической решеткой ( а-железо, вольфрам, магний, цинк, феррит-ные стали, чугун и др.) при низких температурах становятся хрупкими.  

Металлы с гранецентрированной кубической решеткой ( медь, никель, алюминий, аустенитные стали с высоким содержанием никеля) сохраняют свою пластичность при температуре жидкого кислорода. Металлы с объемно-центрированной решеткой ( углеродистые стали, магний, вольфрам и др.) становятся в этих условиях хрупкими.  

Медь обладает гранецентрированной кубической решеткой. Это металл красного ( в изломе розового) цвета, ковкий и мягкий; плотность 8960 кг / м3, / пл 1083 С. Химически она малоактивна; в атмосфере, содержащей СО2, пары Н2О и др., покрывается патиной.  

Кристаллические решетки металлов. а – объемно-центрированная ( ОЦК. б – гранецентрированная ( ГЦК. в – гексагональная ( ГПУ. – ребро куба. – диагональ грани куба. – диагональ куба. – ось симметрии призмы.  

На элементарную ячейку гранецентрированной кубической решетки приходится четыре атома; из них один ( по такому же расчету, как и для объемно центрированной решетки) вносят атомы в вершинах куба, а три суммарно ( 1 / 2×6 3) вносят атомы, находящиеся на середине грани, так как каждый из таких атомов принадлежит двум решеткам.  

Если в узлах гранецентрированной кубической решетки поместить шары, то какая доля пространства будет заполнена шарами в случае плотной упаковки. Эта доля называется коэффициентом упаковки.  

Кристаллические решетки металлов. а – объемно-центрированная ( ОЦК. б – гранецешрированная ( ГЦК. в – гексагональная ( ПТУ. – ребро куба. – диагональ грани куба. – диагональ куба. – ось симметрии призмы.  

На элементарную ячейку гранецентрированной кубической решетки приходится четыре атома; из них один ( по такому же расчету, как и для объемно центрированной решетки) вносят атомы в вершинах куба, а три суммарно ( 1 / 2×6 3) вносят атомы, находящиеся на середине грани, так как каждый из таких атомов принадлежит двум решеткам.  

Схема, показывающая число атомов, находящихся на равном и наименьшем расстоянии от данного атома ( А в различных кристаллических решетках. а – К12. 6 – К8. в – П2 ( С. С. Штейберг.  

На элементарную ячейку гранецентрированной кубической решетки приходятся четыре атома; из них один атом ( по такому же расчету, как и для объемноцентрированной решетки) вносят атомы, находящиеся в вершинах куба ( YsXS), и три атома вносят атомы, находящиеся на середине грани, так как каждый из таких атомов принадлежит двум решеткам.  

На элементарную ячейку гранецентрированной кубической решетки приходятся четыре атома: из них один образуется за счет атомов в вершинах куба, а три – суммарная ( 1 / 2 – 6 3) доля атомов, находящихся в серединах граней, так как каждый из этих атомов принадлежит двум ячейкам.  

Атомно-кристаллическое строение металлов

В чем же заключается такое строение, чем характеризуется? Само название говорит о том, что все металлы представляют собой кристаллы в твердом состоянии, то есть при обычных условиях (кроме ртути, которая является жидкостью). А что такое кристалл?

Это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов. Они располагаются в нем не хаотично, а очень правильно и последовательно. Так вот, если мысленно соединить все эти частицы в одну структуру, то получится красивое изображение в виде правильного геометрического тела какой-либо формы.

Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку. Совокупность таких ячеек, собранная вместе и отраженная в трехмерном пространстве, и образует кристаллические решетки. Химия, физика и металловедение — это науки, которые занимаются изучением особенностей строения таких структур.

Сама элементарная ячейка — это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц. Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом. В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства.

Существует несколько разновидностей кристаллических решеток. Объединяет их все одна особенность — в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Наличие порядка в расположении частиц

В аморфном веществе, в отличие от кристаллического, отсутствует какой-либо порядок в расположении частиц. Если же в кристаллическом веществе мысленно соединить прямой два близкоросположенных друг к другу атома, то можно обнаружить, что на этой линии на строго определенных промежутках будут лежать одни и те же частицы:

Таким образом, в случае кристаллических веществах можно говорить о таком понятии, как кристаллическая решетка.

Кристаллической решеткой называют пространственный каркас, соединяющий точки пространства, в которых находятся частицы, образующие кристалл.

Точки пространства, в которых находятся образующие кристалл частицы, называют узлами кристаллической решетки.

В зависимости от того, какие частицы находятся в узлах кристаллической решетки, различают: молекулярную, атомную, ионную и металлическую кристаллические решетки.

В узлах молекулярной кристаллической решетки Кристаллическая решетка льда Кристаллическая решетка льда как пример молекулярной решетки

находятся молекулы, внутри которых атомы связаны прочными ковалентными связями, однако сами молекулы удерживаются друг возле друга слабыми межмолекулярными силами. Вследствие таких слабых межмолекулярных взаимодействий кристаллы с молекулярной решеткой являются непрочными. Такие вещества от веществ с иными типами строения отличаются существенно более низкими температурами плавления и кипения, не проводят электрический ток, могут как растворяться, так и не растворяться в различных растворителях.

Растворы таких соединений могут как проводить, так и не проводить электрический ток в зависимости от класса соединения. К соединениям с молекулярной кристаллической решеткой относятся многие простые вещества — неметаллы (отвержденные H2, O2, Cl2, ромбическая сера S8, белый фосфор P4), а также многие сложные вещества – водородные соединения неметаллов, кислоты, оксиды неметаллов, большинство органических веществ. Следует отметить, что, если вещество находится в газообразном или жидком состоянии, говорить о молекулярной кристаллической решетке неуместно: корректнее использовать термин — молекулярный тип строения.

кристаллическая решетка алмаза Кристаллическая решетка алмаза как пример атомной решетки В узлах атомной кристаллической решетки

находятся атомы. При этом все узлы такой кристаллической решетки «сшиты» между собой посредством прочных ковалентных связей в единый кристалл. Фактически, такой кристалл является одной гигантской молекулой. Вследствие особенностей строения все вещества с атомной кристаллической решеткой являются твердыми, обладают высокими температурами плавления, химически мало активны, не растворимы ни в воде, ни в органических растворителях, а их расплавы не проводят электрический ток. Следует запомнить, что к веществам с атомным типом строения из простых веществ относятся бор B, углерод C (алмаз и графит), кремний Si, из сложных веществ — диоксид кремния SiO2 (кварц), карбид кремния SiC, нитрид бора BN.

У веществ с ионной кристаллической решеткой в узлах решетки находятся ионы, связанные друг с другом посредством ионных связей.

Поскольку ионные связи достаточно прочны, вещества с ионной решеткой обладают сравнительно высокой твердостью и тугоплавкостью. Чаще всего они растворимы в воде, а их растворы, как и расплавы проводят электрический ток. К веществам с ионным типом кристаллической решетки относятся соли металлов и аммония (NH4+), основания, оксиды металлов. Верным признаком ионного строения вещества является наличие в его составе одновременно атомов типичного металла и неметалла.

Кристаллическая решетка хлорида натрия

Кристаллическая решетка хлорида натрия как пример ионной решетки Однако следует отметить, что в веществах с ионным типом строения нередко можно обнаружить, помимо ионных, также ковалентные полярные связи. Это наблюдается в случае сложных ионов, т.е. состоящих из двух или более химических элементов (SO42-, NH4+, PO43- и т.д.). Внутри таких сложных ионов атомы связаны друг с другом ковалентными связями.

Металлическая кристаллическая решетка

наблюдается в кристаллах свободных металлов, например, натрия Na, железа Fe, магния Mg и т.д. В случае металлической кристаллической решетки, в ее узлах находятся катионы и атомы металлов, между которыми движутся электроны. При этом движущиеся электроны периодически присоединяются к катионам, таким образом нейтрализуя их заряд, а отдельные нейтральные атомы металлов взамен «отпускают» часть своих электронов, превращаясь, в свою очередь, в катионы. Фактически, «свободные» электроны принадлежат не отдельным атомам, а всему кристаллу.

Строение и агрегатное состояние веществ

Выделяют три агрегатных состояния: твердое тело, жидкость и газ. Каждое из них предполагает определенное расположение частиц. Ниже мы расскажем подробнее, как связаны в химии кристаллическая решетка и агрегатное состояние вещества, а пока осветим общие закономерности.

  • Если частицы хаотично движутся, а расстояние между ними многократно превышает их собственные размеры — это газ. За счет большой удаленности друг от друга молекулы и атомы в таком веществе слабо взаимодействуют между собой.

  • Если частицы расположены все так же беспорядочно, но на небольшом расстоянии друг от друга — это жидкость. В жидком состоянии вещества его молекулы и атомы имеют более прочные связи, которые сложнее разорвать.

  • Если частицы собраны близко друг к другу и в определенном порядке — это твердое тело. В таком состоянии связи между ними наиболее прочны. Частицы могут двигаться только в пределах своего расположения и почти не перемещаются в пространстве.

Большинство веществ могут находиться и в твердом, и в жидком, и газообразном состоянии, а в зависимости от давления и температуры легко переходить из одного в другое. Типичный пример — вода, которая при нагревании превращается в пар, а при остывании становится твердым льдом.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: