Медь м1 м2 м3 отличие

Примеси в медных сплавах

Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.

Образующие с медью твердые растворы

К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность. К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1. Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.

Не растворяющиеся в меди примеси

Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением.

Примеси, образующие с медью хрупкие химические соединения

К этой группе относятся сера и кислород, который снижает электропроводность и прочность основного металла. Содержание серы в медном сплаве значительно облегчает его обрабатываемость при помощи резания.


Марки меди и их применение

Медь техническая

В отожженном состоянии она достаточно пластична, но имеет относительно низкую прочность. Химический состав технических марок меди определяет ГОСТ 859–41. Технические марки применяются при выплавке медных сплавов в качестве шихтового материала Техническая марки М0 используется при изготовлении высокой чистоты сплавов, проводников тока. M1 при изготовлении полуфабрикатов, которые получают методом прокатки, при производстве высококачественных бронз, которые не содержат олова. М2 — техническая марка, служит для производства бронз для изготовления высококачественных полуфабрикатов, которые обрабатываются под давлением. Техническая марка МЗ востребована для полуфабрикатов, которые получают способом прокатки, производства бронз стандартного качества и др. литейных сплавов, а также неответственных электрических контактов (как и сплав М2). Техническая марка М4 используется при выплавке литейных бронз.

Магний и сплавы: маркировка и описание

Технический магний обладает не самыми лучшими свойствами, поэтому его не используют как конструкционный материал. А вот магниевые сплавы в соответствии со стандартами подразделяются на литейные и деформируемые.

В соответствии с ГОСТ литейные маркируются как «МЛ», а также цифрой, обозначающей их условный номер. В некоторых моделях после цифр идут такие строчные буквенные обозначения:

  • «пч» — повышенной чистоты;
  • «он» — материал общего назначения.

А деформируемые магниевые сплавы маркируются буквами «МА», а также цифрой, соответствующей условному номеру материала. После числа тоже может идти обозначение «пч».

Магниевые материалы имеют отличное сочетание таких свойств, как:

  • низкая плотность;
  • высокая устойчивость к коррозии;
  • относительно высокая прочность;
  • хорошие технологические качества.

На основе магниевых сплавов производят детали простой и сложной формы, обладающие высокой устойчивостью к коррозии. Например:

  • арматуру;
  • горловины;
  • насосные корпусы;
  • бензиновые баки;
  • барабаны тормозных колес;
  • штурвалы;
  • фермы и т. д.

Виды бронзы и их применение

С развитием металлургии и открытием разных видов металлов, появилось большое количество бронз, но основным металлом в формуле является медь. В зависимости от того, какие компоненты входят в состав, изменяются и свойства материала.

Знание этих особенностей позволяет применять бронзовые сплавы в различных видах промышленности в зависимости от предъявляемых к материалу требований. Бронзу часто выпускают в виде прокатных труб, проволоки и листов. Используется металл в производстве подшипников, втулок, рессор и прочих деталей, подверженных воздействию высокого давления и износа. Высокие антикоррозийные свойства позволяют применять данный материал также в условиях агрессивной внешней среды и при работе с различной химией. Помимо этого, применение бронзы распространено в художественных ковке и литье, из нее делают различные скульптуры, памятники и украшения.

Оловянная

Сплав меди и олова называется оловянным. Эти бронзы применялись в бронзовом веке, дошли до наших дней и являются наиболее применяемыми в промышленности. Из этого вида сплава часто отливались различные колокола, в связи с чем данный материал иногда называется колокольной бронзой.

Оловянистый материал почти не поддается механической обработке, поэтому изделия из него создаются исключительно литьем; имеет высокую твердость и прочность, а также антикоррозийные свойства. Стандартный сплав меди и олова характеризуется количественным соотношением 80:20, но может дополняться некоторыми металлами для изменения свойств:

  • Добавление цинка (менее 10%) позволяет повысить антикоррозийную стойкость. Используется для создания деталей, которым нужно часто контактировать с водой и другими окислителями.
  • Свинец и фосфор повышают антифрикционные свойства. Кроме того, сплав с добавлением этих металлов проще подвергается обработке.

Иногда наличие олова в изделии недопустимо и его заменяют другими металлами, позволяющими достичь требуемых характеристик, например, свинец, кремний, цинк, бериллий или алюминий. Такая бронза называется безоловянной, или специальной.

Свинцовая

Основной легирующий компонент — свинец, содержание которого может достигать 30%. Материал имеет хорошие антифрикционные свойства и высокую теплопроводность, может выдерживать давление до 30 мПа, поэтому применяется для изготовления подшипников, подвергающихся высокому давлению.

Кремниецинковая

Данный сплав состоит из 97% меди, 1.1% олова, 0.05% кремния и цинка. Является довольно пластичным и текучим, что позволяет применять его как материал в изделиях сложной формы. Имеет хорошее сопротивление при сжатии, обладает антифрикционными свойствами и упругостью. Не искрит при обработке, хорошо сопротивляется низким температурам, зачастую содержит добавки никеля и марганца.

Бериллиевая

Бериллиевый сплав является самым твердым из всех существующих видов бронз. Обладает высокими антикоррозийными свойствами, не искрит при обработке, не магнитится. В процессе закалки приобретает хорошую деформируемость и упругость.

Алюминиевая

Состав бронзы в процентах выглядит как 95% меди и 5% алюминия. Сплав очень хорошо сопротивляется агрессивным средам, жаропрочный, но имеет низкие антикоррозийные свойства и дает сильную усадку.

Сплав меди с цинком называется красной бронзой — латунью, а с никелем — мельхиором. Эти соединения являются отдельными материалами, их малое количество может присутствовать в любом сплаве, но должно быть ниже суммы всех остальных компонентов.

Свинец и олово в чистом виде и сплавы

Свинец в чистом виде в холодильной или пищевой промышленности почти не применяется, а олово в пищевой отрасли используется как покрытие пищевой тары. При его маркировке «О» означает олово, цифры же — его условный номер. С повышением номера количество примесей повышается. Буквосочетание «пч» указывает на повышенную чистоту материала. В пищевой промышленности с целью лужения консервной жести используется олово, маркируемое как О1 и О2.

В зависимости от назначения свинцовые или оловянные сплавы подразделяются на две категории:

  • баббиты;
  • припои.

Баббиты представляют собой сложные сочетания из свинца и олова, дополнительно в них присутствуют медь, сурьма и прочее. Их маркируют буквой «Б», а также числом, указывающим на процентное соотношение олова в составе. Помимо буквы «Б» могут быть еще буквы, обозначающие особые добавки, например:

  • Н — никелевый баббит;
  • С — свинцовый баббит и прочие.

Полный химический состав установить только по марке баббита невозможно. В отдельных случаях даже количество олова не указывается, хотя в марке БН его присутствует порядка 10 процентов. Есть баббиты и без олова (в частности, свинцово-кальциевые).

Данный материал признан лучшим антифрикционным и используется преимущественно в подшипниках скольжения.

Вторая категория — припои. Они в зависимости от своих признаков делятся по следующим признакам:

  • по температуре расплавления;
  • по ключевому компоненту;
  • по методу плавки и другим особенностям.

В частности, по температуре расплавления припои бывают следующих типов:

  • особо легкоплавкие (температура плавления составляет около 145 градусов);
  • легкоплавкие (от 145 до 450 градусов соответственно);
  • среднеплавкие (от 450 до 1100 градусов);
  • высокоплавкие (1100−1850 градусов);
  • тугоплавкие (температура от 1850 градусов и выше).

Первые две категории используются с целью низкотемпературной пайки, а прочие для высокотемпературной соответственно.

По своему ключевому компоненту припои бывают таких видов:

  • оловянными;
  • алюминиевыми;
  • кадмиевыми;
  • галлиевыми;
  • свинцовыми;
  • цинковыми и т. д.

Цветные металлы и их сплавы могут иметь разное назначение и разные технические характеристики. Определить их особенности можно по нанесенной маркировке, которую нужно уметь расшифровывать.

ДКРНТ расшифровка

Маркировка параметров металлоизделия производится буквами и цифрами согласно схеме представленной на рисунке.

Рассмотрим маркировку трубы латунной ГОСТ 17217-79.

Труба ДКРНТ 156 х 3,0 мм НД МНЖ5-1 ГОСТ 17217-79 — это означает, что это продукция цветного металлопроката, а именно труба медно-никелевая холоднодеформированная (х/к) (Д) из сплава МНЖ 5-1 , круглая (КР) с нормальной точностью изготовления (Н), твердая по состоянию сплава металла (Т), немерной длины с диаметром 156мм, толщиной стенки 3,0 мм, произведенная согласно ГОСТ 17217-79 . Аналогично маркируются такие изделия прутки круги, например пруток латунный ДКРНП ЛС59-1 20х3000 .

Исторический ракурс

Согласно историческим данным, первый медный сплав появился к 7 тыс. до н.э. Позже в качестве добавки стало использоваться олово. В это время, именуемое бронзовым веком, из такого материала изготавливалось оружие, зеркала, посуда и украшения.

Технология производства менялась. Появились добавки в виде мышьяка, свинца, цинка и железа. Все зависело от требований, предъявляемых к предмету. Материал для украшений нуждался в особом подходе. Состав сплава состоял из меди, олова и свинца.

Начиная с 8 в. до н. э. в Малой Азии была разработана технология получения латуни. В это время еще не научились добывать чистый цинк. Поэтому в качестве сырья использовалась его руда. С течением времени производство медных сплавов постоянно расширялось и до сих пор находится на первых местах.

Поставка

Вас интересуют техническая и чистая медь? Поставщик «Ауремо» предлагает купить техническую и чистую медь сегодня на выгодных условиях. Большой выбор на складе. Полное соответствие ГОСТ и международным стандартам качества, цена — оптимальная от поставщика. Предлагаем купить техническую и чистую медь со специализированных складов с доставкой в любой город. Купить сегодня. Оптовым заказчикам цена — льготная.

Купить, выгодная цена

Техническая и чистая медь от поставщика «Ауремо» соответствует ГОСТ и международным стандартам качества, цена — оптимальная. На складе представлен самый широкий выбор продукции. Всегда в наличии техническая и чистая медь, цена — обусловлена технологическими особенностями производства без включения дополнительных затрат. Оптимальная цена от поставщика. Купить сегодня. Ждем ваших заказов. У нас наилучшее соотношение цена-качество на весь ряд продукции. На связи опытные менеджеры — оперативно помогут купить медный прокат оптом или в рассрочку. Постоянные покупатели могут купить медный прокат с дисконтной скидкой.

Понятие меди. Свойства меди.

Медь — это пластичный цветной металл, розового цвета или золотисто-розового (в случае если отсутствует оксидная пленка), получаемый из медной руды методом высокотемпературной плавки. В периодической системе химических элементов — это элемент одиннадцатой группы, имеющий атомный номер 29. Принято обозначать медь на латинском как Сu.

Медь — это металл, известный нам еще с древних времен, обладающий определенными свойствами:

  • Высокая электропроводность меди. По такому параметру, как удельное сопротивление медь уступает только серебру.
  • Высокая механическая прочность и пригодность для механической обработки
  • Коррозионная стойкость
  • Долговечность (срок службы изделий из меди более 50 лет).

Благодаря этим особенностям медь получила широкое распространение в электротехнике, в промышленности, в быту.

Латуни

Латуни — это медные сплавы, в которых основным легирующим элементом является цинк.

В зависимости от содержания цинка латуни промышленного применения бывают:

  1. однофазные a — латуни, содержащие до 39 % цинка (это предельная растворимость цинка в меди);
  2. двухфазные (a+b|)- латуни, содержащие до 46 % цинка;
  3. однофазные b|- латуни ,содержащие до 50 % цинка.

Однофазные a- латуни пластичны, хорошо обрабатываются резанием, давлением при температурах ниже 300 0 С и выше 700 0 С (в интервале от 300 0 С до 700 0 С — зона хрупкости). С увеличением содержания цинка прочность латуней повышается. В латунях b|- фаза представляет собой упорядоченный твердый раствор на базе электронного соединения СuZn с решеткой ОЦК, она хрупкая и прочная. Поэтому, чем больше в латунях b|- фазы, тем они прочнее и менее пластичны. Практическое применение имеют латуни с содержанием цинка до 42…43 %.

Латуни, обрабатываемые давлением, маркируются буквой Л (латунь), после которой ставятся буквенные обозначения легирующих элементов; цифры, следующие за буквами, указывают содержание меди и количество соответствующего легирующего элемента в процентах. Содержание цинка определяется по разности от 100 %. Например, латунь Л62 содержит 62 % Сu и 38 % Zn. Литейные латуни маркируются буквой Л, после которой ставится содержание цинка и других легирующих элементов в процентах. Количество меди определяется по разности от 100 %. Например, латунь ЛЦ36Мц20С2 содержит 36 % Zn, 20 % Mn, 2 % Pb и 42 % Сu.

К однофазным a — латуням относятся Л96 (томпак), Л80 (полутомпак), Л68, имеющая наибольшую пластичность (d = 56 %). Двухфазные (a+b|) — латуни марок Л59 и Л60 имеют меньшую пластичность в холодном состоянии, но большую прочность и износостойкость. Однофазные имеют после отжига sв = 250…350 МПа и d = (50…56) %, двухфазные — sв = 400…450 МПа и d = (35… 40 %).

Для повышения механических свойств и коррозионной стойкости латуни могут легироваться оловом, алюминием, марганцем, кремнием, никелем, железом и др.

Введение легирующих элементов (кроме никеля) уменьшает растворимость цинка в меди и способствует образованию b|- фазы, поэтому такие латуни чаще двухфазные (a+b|). Никель увеличивает растворимость цинка в меди, и при достаточном его содержании латунь из двухфазной становится однофазной. Свинец облегчает обрабатываемость резанием и улучшает антифрикционные свойства. Сопротивление коррозии повышают Al, Zn, Si, Mn, Ni, Sn.

В морском судостроении применяются оловянистые ”морские” латуни, например, ЛО70-1 (70 % Сu, 1 % Sn, 29 % Zn). Она используется для изготовления конденсаторных трубок, деталей теплотехнической аппаратуры.

Алюминиевые латуни

используют для изготовления конденсаторных трубок, цистерн, втулок, а также для изготовления коррозионно-стойких деталей, работающих в морской воде. Марки латуней: ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2 (в электрических машинах, в хим. машиностроении). Из латуни ЛАНКМц75-2-2,5-0,5-0,5 изготовляют цельнотянутые круглые трубы для производства манометрических трубок и пружин в приборах повышенного класса точности. С помощью закалки и старения sв достигает 700 МПа.

Марганцевые латуни

кроме хороших механических и технологических свойств (обрабатываются давлением в холодном и горячем состоянии) обладают высокой коррозионной стойкостью в морской воде, хлоридах и перегретом паре. Латуни ЛМц 58-2 и ЛМцА 57-3-1 применяются в основном для изготовления крепежных изделий арматуры.

Кремнистые латуни

характеризуются высокой прочностью (sв до 640 МПа), пластичностью и вязкостью до минус 183 0 С. Латунь ЛК80-3 применяют для изготовления арматуры, деталей приборов в судо- и общем машиностроении.

Свинцовистые латуни

отлично обрабатываются резанием и обладают высокими антифрикционными свойствами. Латуни ЛС60-1, ЛС59-1 применяют для изготовления крепежных деталей , зубчатых колес, втулок.

Никелевая латунь

обладает повышенными механическими (sв до 785 МПа) и коррозионными свойствами, обрабатывается давлением в холодном и горячем состоянии. Латунь ЛН65-5 применяется для изготовления манометрических и конденсаторных трубок, различного вида проката.

Литейные латуни

содержат те же элементы, что и латуни, обрабатываемые давлением; от последних литейные отличает, как правило, большее легирование цинком и другими металлами. Вследствие этого они обладают хорошими литейными характеристиками.

3) Медь и ее сплавы. Классификация и маркировка медных сплавов.

Медь-металл розовато-красного цвета, плотность её 8,95г/см3, температура плавления1083С, кристаллизуется в гранецентрированной решётке и не имеет полиморфных превращений. На воздухе при наличии влаги углекислого газа медь медленно окисляется, покрываясь зелёной плёнкой так называемой патины (щелочной карбонат меди). Эта плёнка в определённой мере защищает медь от дальнейшего окисления. Медь принято считать эталоном электропроводности теплопроводности по сравнению другими металлами. Медь легко обрабатывается давлением, плохо резанием, имеет невысокие литейные свойства, плохо сваривается, но легко подвергается пайке. Применяется в виде листов, прутков проволоки. Механические свойства меди существенно зависят от её состояния.Маркировка:

«МТ» – твердая медь, «ММ» – мягкая медь.Маркируется медь буквой М и цифрами, зависящими от содержания примесей. Медь марок М00 (0,01% примесей),М0 (0,05%примесей), М1(0,1%примесей) используется для изготовления проводников электрического тока, медь М2 (0,3%примесей) – для производства высококачественных сплавов меди,М3 (0,5%примесей)- для сплавов обыкновенного качества.

Латуни

– двойные многокомпонентные медные сплавы с основным легирующим элементом – цинком. По сравнению с медью обладает более высокой прочностью и коррозионной стойкостью. Простые латуни обозначают буквой Л и цифрой, показывающей содержание меди в процентах. В специальных латунях после буквы Л пишут заглавную букву дополнительных легирующих элементов (А – алюминий, Б – бериллий, Ж – железо, К – кремний, Мц – марганец, Н – никель, О – олово, С – свинец, Ц – цинк, Ф. – фосфор) и через тире после содержания меди указывают содержание легирующих элементов в процентах. Латуни разделяют на литейные и деформируемые. Латуни, за исключением свинцовосодержащих, легко поддаются обработке давлением в холодном и горячем состоянии. Все латуни хорошо паяются твердыми и мягкими припоями.

Бронзами

называют медные сплавы, в которых основными легирующими элементами являются различные металлы, кроме цинка. Маркируют бронзы буквами Бр, за которыми следуют заглавные буквы легирующих элементов, а через тире цифры, показывающие их процентное содержание.По сравнению с латунью бронзы обладают более высокой прочностью, коррозионной стойкостью и антифракционными свойствами. Они весьма стойки на воздухе, в морской воде, растворах большинства органических кислот, углекислых растворах.Большинство бронз (за исключением алюминиевых) хорошо поддаются сварке и пайке твердыми и мягкими припоями.

Основные свойства меди

Физические свойства

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.

Это интересно: Cварка нержавейки. Чем и как лучше варить нержавейку в домашних условиях

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток, протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

Химические свойства

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) – верхнего слоя платины. Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Медь

Мягкий, пластичный металл розовато-золотистого цвета. Его красота издревле привлекала человека, поэтому первыми изделиями из меди были украшения.

В присутствии кислорода медные слитки и изделия из меди приобретают красновато-жёлтый оттенок за счёт образования плёнки из оксидов. Во влажной среде в присутствии углекислого газа медь становится зеленоватой.

Медь имеет высокие показатели теплопроводности и электропроводности, что обеспечивает ей использование в электротехнике. Не меняет свойств в значительном диапазоне температур от очень низких до очень высоких. Не магнитная.

В природе залежи медной руды чаще, чем других металлов, находятся на поверхности. Это позволяет вести добычу открытым способом. Встречаются крупные медные самородки с высокой чистотой меди и медные жилы. Помимо этого медь получают из таких соединений:

  • медный колчедан,
  • халькозин,
  • борнит,
  • ковеллин,
  • куприт,
  • азурит,
  • малахит.

Как влияют примеси на характеристики цинка

Применяют цинк для создания сплавов только в очищенном виде, т.к. наличие различных примесей в нем обеспечивают ухудшение материала (сплава). Соединения изначального цинка с определенными элементами, т.е. его неочищенная форма, приводит к следующим дефектам:

  • Наличие олова – материал получается хрупким и обладает повышенной ломкостью.
  • Кадмий – уменьшает пластичность.
  • Свинец – способствует ускоренной межкристальной коррозии. Делает сплав более подверженным воздействию кислот (растворению).
  • Железо – повышается прочность, но уменьшается пластичность.
  • Мышьяк – хрупкость и отсутствие эластичности.

Избавление от данных примесей исключает вышеописанные дефекты, что позволяет получать сплавы с отличными эксплуатационными характеристиками.

Медь она и в Африке медь?

Данная статья является в каком-то роде продолжением нашей предыдущей статьи, про омедненную (CCA) и медную (Cu) витую пару

На этот раз, мы уделим внимание вопросу ценообразования на бюджетные медные 4х-парные UTP кабели, а именно, дадим ответ на вопрос: почему на отечественном рынке такой существенный разброс в цене на обычный медный 4-парный кабель UTP 5e категории произведенный в Китае? Разница в цене между медным и омедненым кабелем очевидна, и не вызывает вопросов. Высокий спрос на дешевую витую пару (UTP кабель) и острый дефицит меди породил соответствующее предложение — омедненные кабели, однако качество последних оставляет желать лучшего

Многие потребители, вдоволь наэкспериментировавшись с омедненной витой парой, вернулись обратно к медной.

Китай один из самых основных импортеров меди. Из года в год потребности в меди на внутреннем рынке Китая только увеличиваются и отчасти сдерживаются высокой ценой на медь. С 1 января 2006 г. в Китае запрещена переработка медного лома и концентрата меди с целью экспорта конечной продукции. Кроме того, были введены 13%-ный НДС и 5%-ная экспортная пошлина на экспорт катодной меди.

Таким образом, в связи с нехваткой меди на мировом рынке и политикой китайского правительства направленной на смягчение дефицита в медном ломе внутри страны, последний стал более привлекателен для некоторых китайских производителей выпускающих дешевую витую пару.

Какая медь используется при производстве жил кабеля витая пара ?

При производстве кабелей связи может быть использована медь разного качества. Условно можно выделить три класса: А, B, С. Небольшое сравнительное описание классов меди дано в таблице №1.

Таблица №1

Класс меди Содержание кислорода в меди Удельное сопротивление (Ом*мм2/м) Степень чистоты, %
A безкислородная (oxygen-free-copper) 0.0165—0.0168 99,995
B низкокислородная (oxygen-low-copper) 0.0172—0.0178 98-99
C (second hand) неизвестно 0.0190—0.1500 неизвестна

Одной из важных характеристик проводников является удельное сопротивление. Удельное сопротивление характеризует способность проводника проводить электрический ток, и представляет собой величину сопротивления однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 мм². Для справки: в соответствии с международным стандартом (IACS), величина удельного сопротивления меди используемой для электрических проводников должна составлять 0.017241 Ом*мм2/м при температуре 20° C. Чем выше сопротивление, тем, естественно, хуже проводник.

Традиционно производители кабелей связи используют медь класса A, т.е. самую качественную и чистую медь, но в связи с дефицитом, или необходимостью уложится в низкий бюджет за катушку озвученный заказчиком, производители могут использовать менее качественную медь класса B, С, и даже омедненную медь, речь о которой пойдет ниже.

Возможно, вы испытали легкое замешательство, столкнувшись с загадочным названием «омедненная медь», и это нормально. У омедненной меди есть англоязычное название — CCC (Copper Clad Copper), аналогично CCA (Copper Clad Aluminium). Технологически омедненная медь – это жила, с сердцевиной из меди очень плохого качества (медный лом), поверх которой нанесен слой более-менее качественной электротехнической меди.

Как вы понимаете, удельное сопротивление сердцевины и поверхностного слоя жилы будет разным, как и в случае CCA кабеля, что так же негативно будет сказываться на передаче данных и на максимальной длине сегментов. Об этом подробно было написано в предыдущей статье.

Какую же денежную выгоду продавцам сулит использование производителями меди плохого качества ?

Для ответа на этот вопрос следует знать, что конечная стоимость, например, обычного 4-парного кабеля UTP 5е категории для внутренней прокладки на 70-80 % зависит от цены на медь. Для оценки разницы в цене на медь мы хотим привести данные (таблица №2) о стоимости меди для китайских производителей в один из периодов 2009 года.

Таблица №2

Класс меди Цена в USD за тонну
А 6700
B 6550
C 6300
Медь для CCC (Copper Clad Copper) 6000

Таким образом, используя медь очень плохого качества при производстве кабеля можно сэкономить более 10% от себестоимости кабеля. Второй уловкой, к которой прибегают производители самой дешевой витой пары это существенное занижение диаметра жилы, что опять же позволяет сэкономить на меди.

Мы рекомендуем:

Чистая медь

Марка М0 содержит 99,95% Cu и не больше 0,05% примесей. По специальным техническим условиям производят несколько марок вакуумной меди и особенно бескислородной чистой меди, которая применяется в электровакуумной промышленности. Из безкислородной меди серий, А и Б производят полосы, ленты, прутки, трубы. Из вакуумной чистой меди изготавливают ленты и прутки. Из чистой меди, которую раскисляют марганцем, производят прутки. Все данные полуфабрикаты используются в электровакуумной промышленности. Для безкислородной чистой меди характерна пониженная (-100°С) температура рекристаллизации.

Стандарты

Название Код Стандарты
Трубы из цветных металлов и сплавов В64 ГОСТ 11383-75, ГОСТ 16774-78, ГОСТ 617-2006, ОСТ 4.021.122-92, TУ 48-0810-107-86
Прутки В55 ГОСТ 1535-2006, ОСТ 4.021.019-92, ОСТ 4.021.040-92
Сварка и резка металлов. Пайка, клепка В05 ГОСТ 16130-90
Ленты В54 ГОСТ 16358-79, ГОСТ 20707-80, ГОСТ 1173-2006, ГОСТ Р 50248-92, ОСТ 4.021.077-92, TУ 48-21-349-91, TУ 48-21-854-88, СТП М137-80
Цветные металлы, включая редкие, и их сплавы В51 ГОСТ 193-79, ГОСТ 859-2001, ОСТ 4.021.009-92
Листы и полосы В53 ГОСТ 495-92, ГОСТ 767-91, ГОСТ 5638-75, ОСТ 4.021.049-92, ОСТ 4.021.094-92, TУ 1844-046-00219454-2000, TУ 48-0810-208-93, TУ 48-0810-103-82, СТП М207-78
Твердые сплавы, металлокерамические изделия и порошки металлические В56 TУ 14-22-67-94
Проволока из цветных металлов и их сплавов В74 TУ 48-21-858-88, TУ 48-0809-62-93
Прочие проволочные изделия В78 TУ 4833-002-08558606-95

Способы производства коммуникаций

ГОСТ определяет 2 технологические операции по получению медной трубы:

  • прокат;
  • прессование (предполагается последующая сварка стыков).

Для производства круглых труб подходят оба метода. Изделия с квадратным сечением изготавливаются преимущественно прессованием. Прокатные трубы предполагают использование метода холодного деформирования. Без предварительного нагревания пластичный металл – медь – можно прокатать между двумя вальцами. На прокатный стан просто надевается заготовка – гильза. Она и выкатывается до необходимого диаметра.

На этапе финальной обработки коммуникации делятся на неотожженные трубы и подвергнутые отжигу изделия. Первый тип прочнее, чем термически обработанные аналоги, поскольку при прокате произошло уплотнение материала путем деформации кристаллической решетки.

Прессованные изделия производятся из меди в листах на специальных станках. Из каждого листа вырубается мерная заготовка, которая подается на формовочные прессовые вальцы. После придания необходимой формы заваривается стыковочный шов.

На последнем этапе сварная труба пропускается сквозь калибровочные вальцы, которые выравнивают профиль изделия, а также исправляют продольную деформацию.

Медные трубы поставляются в бухтах или прямых отрезках — это зависит от их диаметра

Достоинства и недостатки

Рассмотрим плюсы и минусы медных труб.

К их положительным качествам относят:

  • Высокие значения электропроводности, теплопроводности.
  • Отличную прочность при тонких стенках, сравнимую со стальными трубами.
  • Устойчивость к коррозии, долгий срок службы, достигающий 100 лет.
  • Способность переносить высокие перепады температур (от -100 до +250 C).
  • Подверженность различным вариантам обработки: пайке, сварке, методам давления, резания.

Эксперты находят и недостатки у медных отводов:

  1. В среде, насыщенной влагой и содержащей углекислый газ, поверхность отводов покрывается зеленоватым налетом (патиной). При этом его не рекомендуют счищать, так как он играет роль защитного слоя.
  2. Высокая стоимость, хотя профессионалы-монтажники утверждают, что при умелом использовании медной продукции она сопоставима с полимерными образцами.
  3. Возникновение очагов коррозии в местах соприкосновения с другими металлами, пересечения электропроводящих проводов.
  4. Диаметр мягкой трубы ограничен 28 мм.
  5. Отожженный отвод выровнять в идеальную прямую практически невозможно. Поэтому открытая система из таких изделий выглядит неопрятной. Но для скрытой прокладки она подойдет.

Еще одно неоднозначное мнение: медные трубы не годятся для питьевой воды. Ионы меди, попадающие в воду, наносят вред организму человека.

Противники этой точки зрения приводят доводы, что за рубежом медные изделия активно используются для систем водоснабжения.

Чистая медь

Марка М0 содержит 99,95% Cu и не больше 0,05% примесей. По специальным техническим условиям производят несколько марок вакуумной меди и особенно бескислородной чистой меди, которая применяется в электровакуумной промышленности. Из безкислородной меди серий, А и Б производят полосы, ленты, прутки, трубы. Из вакуумной чистой меди изготавливают ленты и прутки. Из чистой меди, которую раскисляют марганцем, производят прутки. Все данные полуфабрикаты используются в электровакуумной промышленности. Для безкислородной чистой меди характерна пониженная (-100°С) температура рекристаллизации.

Описание

Медь М1 применяется: для производства проводников тока; проката; высококачественных бронз, не содержащих олова; изделий криогенной техники; круглых тянутых тонкостенных труб; холоднокатаных фольги и ленты, холоднокатаных и горячекатаных листов и плит общего назначения; проволоки для изготовления плетенок металлических экранирующих типа ПМЛ, предназначенных для экранирования проводов и кабелей; горячекатаных и холоднокатаных анодов, применяемых для гальванических покрытий изделий; холоднодеформированной ленты прямоугольного сечения с толщиной 0,16−0,30 мм, предназначенной для коаксиальных магистральных кабелей; радиаторных лент, предназначенных для изготовления охлаждающих трубок и пластин радиаторов; тянутых труб прямоугольного и квадратного сечения, предназначенных для изготовления проводников обмоток статоров электрических машин с жидкостным охлаждением; профилей для изготовления роторов погружных электродвигателей; круглой сварочной проволоки и круглых сварочных прутков тянутых и прессованных диаметром от 1,2 до 8,0 мм, предназначенных для автоматической сварки в среде инертных газов, под флюсом и газовой сварки неответственных конструкций из меди, а также изготовления электродов для сварки меди и чугуна.

Примечание

Медь М1 получают переплавкой катодов. Медь марки М1 по химическому составу соответствует меди марки Cu-ETP по Евронорме EN 1652:1998.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: