Сравнительные таблица перевода соответствия различных систем и шкал твёрдости виккерс роквелл бринелль шор hrc hra hb hv предела прочности переводная табл

Поправки, добавляемые к величинам твердости по Роквеллу, при измерениях на выпуклых цилиндрических поверхностях

1. При измерениях по шкалам А, С, D.

Таблица 3

Твердость по Роквеллу

Радиус
кривизны R, мм

3

5

6,5

8

9,5

11

12,5

16

19

20

2,5

2,0

1,5

1,5

1,0

1,0

25

3,0

2,5

2,0

1,5

1,0

1,0

1,0

30

2,5

2,0

1,5

1,5

1,0

1,0

0,5

35

3,0

2,0

1,5

1,5

1,0

1,0

0,5

0,5

40

2,5

2,0

1,5

1,0

1,0

1,0

0,5

0,5

45

3,0

2,0

1,5

1,0

1,0

1,0

0,5

0,5

0,5

50

2,5

2,0

1,5

1,0

1,0

0,5

0,5

0,5

0,5

55

2,0

1,5

1,0

1,0

0,5

0,5

0,5

0,5

60

1,5

1,0

1,0

0,5

0,5

0,5

0,5

65

1,5

1,0

1,0

0,5

0,5

0,5

0,5

70

1,0

1,0

0,5

0,5

0,5

0,5

0,5

75

1,0

0,5

0,5

0,5

0,5

0,5

80

0,5

0,5

0,5

0,5

0,5

85

0,5

0,5

0,5

90

0,5

Примечание. Поправки
более 3 единиц твердости по шкалам А, С, D не допускаются.

2. При измерениях по шкалам В, F, G

Таблица 4

Твердость по Роквеллу

Радиус
кривизны R, мм

3

5

6,5

8

9,5

11

12,5

20

4,5

4,0

3,5

3,0

30

5,0

4,5

3,5

3,0

2,5

40

4,5

4,0

3,0

2,5

2,5

50

4,0

3,5

3,0

2,5

2,0

60

5,0

3,5

3,0

2,5

2,0

2,0

70

4,0

3,0

2,5

2,0

2,0

1,5

80

5,0

3,5

2,5

2,0

1,5

1,5

1,5

90

4,0

3,0

2,0

1,5

1,5

1,5

1,0

100

3,5

2,5

1,5

1,5

1,0

1,0

0,5

Примечание. Поправки более 5 единиц твердости по шкалам В, F, G не допускаются.

Поправки, добавляемые к величинам
твердости по Роквеллу при измерениях по шкале C на сферических поверхностях

Таблица 5

Твердость по Роквеллу

Диаметр сферы d, мм

4

6,5

8

9,5

11

12,5

15

20

25

55 HRC

6,4

3,9

3,2

2,7

2,3

2,0

1,7

1,3

1,0

60 HRC

5,8

3,6

2,9

2,4

2,1

1,8

1,5

1,2

0,9

65 HRC

5,2

3,2

2,6

2,2

1,9

1,7

1,4

1,0

0,9

Поправка.
(ИУС № 8 2002 г.).

Значения поправок (ΔH) вычислены
по формуле

где HR — значение
твердости по Роквеллу, определенное на приборе;

d — диаметр сферы, мм.

Приложение 3. (Введено дополнительно, Изм. № 3).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1.  РАЗРАБОТАН И ВНЕСЕН Центральным научно-исследовательским институтом черных металлов Министерства черной металлургии СССР

ИСПОЛНИТЕЛИ

Н.П. Лякишев, Б.М. Овсянников, Н.А. Бирун

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР
04.02.59

3. ВВЕДЕН ВПЕРВЫЕ

4. Стандарт соответствует СТ СЭВ
469-77 и ИСО 6508-86

5. Стандарт унифицирован со стандартом TGL
9011

6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта,
приложения

Приложение 1

3.2

1.2, 3.2

3.1

7. Срок действия продлен до
01.01.95 Постановлением Госстандарта СССР от
23.05.89 № 1287

8. ПЕРЕИЗДАНИЕ (август
1991 г.) с Изменениями № 1,
2, 3, утвержденными в мае
1979 г., ноябре
1984 г., мае
1989 г. (ИУС 7-79, 1-85, 8-89)

1. Отбор образцов. 1

3.
Аппаратура. 2

4.
Измерение твердости. 2

5.
Протокол испытания. 3

Приложение
1 Обозначения параметров, их определения и схемы приложения нагрузки при
определении твердости. 3

Приложение
2 Минимальная толщина образца в зависимости от шкалы и ожидаемой твердости
при измерении твердости по шкалам А, С, D.. 4

Приложение 3 Поправки, добавляемые к величинам
твердости по Роквеллу, при измерениях на выпуклых цилиндрических поверхностях. 6

Как проводятся испытания металлов на твердость

Твердость – способность металлов сопротивляться другому, более твердому телу

Эта характеристика является очень важной, тесно связанной с такими основными свойствами, как износостойкость, сопротивление и другие

Методы определения твердости металлов

Для определения величины твердости применяются различные методы: по диаметру отпечатка, отскоку, глубине вдавливания и другие. Выбор метода зависит от условий испытания, требований к сохранности образца.

Метод Бринелля

Этот метод позволяет определить твердость металла по диаметру оставленного отпечатка, который оставляется специальным шариком. Величина твердости определяется соотношением усилия к площади отпечатка (учитывается площадь части сфера, а не круга отпечатка). Размерность определяется, как HB, где Н – твердость, В – Бринелль (используемый метод).

Для оценки используется специальный пресс и шарик из шарикоподшипниковой закаленной стали, вдавливаемый в поверхность металла. Диаметр оставленной лунки определяется при помощи специальной лупы, значение твердости указывается в таблицах. Порядок исследования включает в себя такие этапы:

  • образец (деталь) размещается на предметном столике, поднимается к стальному шарику при помощи штурвала;
  • после включения мотора пресс вдавливает шарик в металл;
  • проводится оценка отпечатка, сравнение с табличными данными.
Метод Роквелла

Этот метод используется для определения величины твердости по глубине вдавливания конуса. Для исследования применяется алмазный конус, вдавливаемый при постоянной нагрузке, равной 10 кг, далее – при полной нагрузке в 60 кг или 150 кг.

Порядок оценки включает в себя следующие этапы:

  • образец располагается на специальном столике;
  • алмазный конус крепится в оправе над образцом;
  • при помощи штурвала образец поднимается к конусу под указанным давлением;
  • ручка освобождает груз, образец опускается;
  • специальный индикатор определяет глубину вдавливания, т есть значение твердости для испытуемого металла.
Метод динамического вдавливания

Метод динамического вдавливания может производится при помощи испытаний двух типов – по Виккерсу и Шору. В первом случае величина определяется по оставленной площади отпечатка. При испытаниях по Шору твердость испытуемого металла определяется по глубине проникновения индентора. Этот метод может использоваться для мягких материалов (вариант А) и для твердых (вариант D).

При испытаниях для массивных конструкций и деталей используются специальные переносные приборы, для остальных случаев применяются стационарные установки. Порядок оценки очень простой:

  • осуществляется закладка эталонного образца или его размещение в контрольной области;
  • удар молотком по прибору провоцирует нанесение отпечатка на исследуемую область (для этого используется специальный шарик);
  • проводится сопоставление лунки на образце или детали с табличными значениями.
Метод упругой отдачи (отскока)

Для оценки по методу Шора используется склероскоп, сам метод применим в тех случаях, когда нельзя применять другие способы из-за опасения повредить поверхность готового изделия.

Твердость оценивается в условных единицах HSx, которые будут пропорциональны значению высоты отскока бойка. Порядок испытаний очень простой, с постоянной высоты на поверхность металла падает боек и отскакивает. Величина отскока показывает значение твердости, которая будет тем больше, чем выше отскочит боек.

Метод отличается высокой производительностью, он часто используется для оценки одних и тех же металлов с одинаковыми свойствами упругости.

Испытания на твердость широко используются в различных сферах промышленности. Они отличаются производительностью, простотой измерений и не влекут за собой разрушения готового изделия. Кроме того, оценка твердости дает возможность одновременно определить и другие показатели для металлов, например, предел прочности или временного сопротивления.

Характеристики методики Виккерса

Еще один очень простой способ, который отличается скоростью и точностью, но дороговизной оборудования. Перечислим особенности:

  • Используется алмазная пирамидка с более тупым углом – 136 градусов в вершине.
  • Не допускается деформация более 100 кгс.
  • Выдерживают время очень короткое – от 10 до 15 секунд.
  • Измерять можно параметры любого материала, в том числе особенно прочного, а также сталей, которые прошли термическую обработку.

Последовательность исследования

Упрощенный алгоритм:

  • Проверьте поверхностный слой детали, а также все оборудование.
  • Рассчитайте допустимое усилие.
  • Установите образец, закрепите его.
  • Запустите аппарат и спустя 10-15 секунд проанализируйте итог.

Измерение твердости («hardness testing»)

Измерение твердости металлов – твердометрия («hardness testing») или дюрометрический анализ является основным неразрушающим методом оценки прочностных характеристик при экспертизе металлов. Если давать каноническое определение, то твердость – это способность материала сопротивляться пластической деформации. Твердометрия крайне широко используется в металловедческой экспертизе, благодаря скорости и простоте проведения исследования. Зачастую не нужна даже пробоподготовка, а твердость измеряют на готовом изделии.

Теперь о том, как же проводится измерение твердости. Определенной формы индентор (о формах которого поговорим ниже) вдавливается в исследуемы материал с заданной нагрузкой в течении регламентированного периода времени (5-15 с.). После снятия нагрузки в материале остается след от индентора – вмятина, площадь которой определяют. Отношение вдавливающей нагрузки к площади полученного отпечатка и является значением твердости, измеряется в кгс/мм2.

Методов твердости существует множество, все они отличаются только типом индентора, а принцип везде один и тот же. В экспертизе металлов основными видами измерения твердости являются:

измерение твердости по Бриннелю (HB).

измерение твердости по Виккерсу (HV);

измерение твердости по Роквеллу (HR);

Если говорить

Теперь давайте о каждом методе измерения твердости поподробнее.

Метод твердости по Бриннелю разработал и впервые применил на практике инженер из Швеции Юхан Бриннель. Данный способ измерения твердости заключается во вдавливании в исследуемый металл стального шарика диаметром от 1 до 10 мм. Недостатком данного метода является большой диаметр отпечатка и невозможность его использовать на высокотвердых материалах. Твердость по Бриннелю используют в основном для аттестации цветных сплавов и чугунов.

В 1914 г. свой способ измерения твердости предложили однофамильцы Роквелл Хью и Станли из США. Индентором в данном методе является стальной шарик диаметром одна шестнадцатая дюйма или алмазный конус с углом при вершине 120°. По Роквеллу можно определяют твердость образцов из закаленных сталей, что не позволяет сделать по методу Бриннелю.

В методе определения твердости по Виккерсу в качестве индентора используется квадратная алмазная пирамидка с углом у вершины 136°.


Данный способ широко используется при экспертизе закаленных сталей, высокопрочных покрытий, сварных швов. Существуют приборы микротвердости по Виккерсу, которые работают в паре с оптическим микроскопом и позволяют определять твердость отдельных структурных составляющих стали, например твердость пластинки видманшеттового феррита. для своих исследований использует микротвердомер, представленный на фото.

Твердость очень хорошо коррелирует с прочностными характеристиками, в частности с пределом прочности. Используя экспериментально определенные характеристики, можно измерив неразрушающим методом твердость, рассчитать предел прочность стали. Средний коэффициент для средней марки стали будет равен примерно 0,3, не зависимо от способа определения твердости. Так например, если твердость исследованного образца составляет 220 кгс/мм2, то примерный предел прочности будет около 660 МПа.

Кратко расскажу об экзотических, то есть редко применяемых в металловедческой экспертизе методах измерениях твердости.

Метод Мооса или метод царапания – твердость определяют по глубине царапины оставленной индентором.

Методы Шора: отскока – твердость определяют по высоте отскока стального шарика от исследуемого материала и метод вдавливания – вдавливаются разнообразные инденторы, по отпечатку определяют твердость. Используют в основном для резин и пластмасс.

<<<�предыдущая статья следующая статья>>>

Измерение твердости по Шору

Метод определения твердости по Шору применяется для тестирования прокатных валиков на момент их изготовления. Кроме этого, проверка рассматриваемого показателя может проводиться при эксплуатации валиков на прокатных станках, так как из-за оказываемого воздействия структура металла может изменяться, ухудшая эксплуатационные качества. Регламентирован метод Шора ГОСТ 23273.

Шкала твердости по Шору

Рассматривая измерение твердости по Шору, следует отметить следующие моменты:

  1. В отличие от предыдущих способов, рассматриваемый основан на свободном падении алмазного индикатора на тестируемую поверхность с определенной высоты. Для тестирования применяется специальное оборудование, которое позволяет фиксировать точно высоту отскока.
  2. Масса применяемого бойка с алмазным наконечником составляет 36 грамм. Этот показатель важен, так как учитывается при проводимых расчетах.
  3. Твердость определяется по высоте отскока, измерение проводится в условных единицах. Падение образца на поверхность происходит с образованием небольшого углубления, а упругость приводит к обратному отскоку. Этот метод хорош тем, что позволяет проводить тестирование образцов, которые прошли предварительную термическую обработку. При постепенном вдавливании возникающая нагрузка может стать причиной деформирования используемого наконечника или шарика. В этом случае вероятность их деформации весьма мала.
  4. За 100 единиц твердости в этом случае принято считать высоту отскока 13,6 мм с возможностью небольшого отклонения в большую или меньшую сторону. Этот показатель можно получить при тестировании углеродистой стали, прошедшей процесс закалки. В качестве обозначения применяется аббревиатура HSD.

Сегодня этот способ измерения твердости применяется довольно редко из-за высокой погрешности и сложности замера высоты отскока байка от тестируемой поверхности.

Как ранее было отмечено, существует довольно большое количество методов измерения рассматриваемого показателя. Однако из-за сложности проведения тестов и большой погрешности многие уже не применяются.

В некоторых случаях проводится тестирование на микротвердость. Для измерения этого показателя прилагается статическая нагрузка к телу с формой пирамиды, и оно входит в испытуемые образец. Время выдержки может варьироваться в большом диапазоне. Показатель вычисляется примерно так же, как при методе Виккерса.

Твердомеры ультразвуковые

Главная страница » Твердомеры

К методам неразрушающего контроля и технической диагностики (МНК и ТД) относится контроль ультразвуковыми твердомерами.

Принцип действия инструмента

Принцип действия ультразвукового твердомера основан на использовании явления затухания колебаний (метод UCI — ультразвуковой контактный импеданс). Суть метода UCI заключается в следующем:

  • алмазную пирамидку индентора прижимают к исследуемому образцу;
  • обеспечивается постоянное усилие;
  • возбуждаются упругие колебания.

По глубине продавливания определяется твёрдость: чем глубже индентор продавливает поверхность, тем меньше твёрдость образца.

Преимущества ультразвуковых твердомеров перед аналогами других типов

Ультразвуковые твердомеры имеют ряд преимуществ:

  • производят измерение твердости изделий толщиной от 1мм, что является невозможным для динамических твердомеров;
  • на месте проведения испытания (на поверхности изделия) остаётся маленький отпечаток. Поэтому, возможен контроль твёрдости шеек коленчатых валов, зеркальных поверхностей, ножей и т. д.;
  • возможны измерения в широком диапазоне показателей твердости;
  • комфорт при проведении испытаний.

Инструмент оснащается различными девайсами, позволяющими значительно повышать производительность и качество труда: графический индикатор, устройство контроля уровня заряда аккумуляторной батареи и т. д.

Дадим краткое описание популярных моделей ультразвуковых твердомеров.

Твердомер ультразвуковой «ТКМ-459С».

Твердомеры ультразвуковые «ТКМ-459С», «ТКМ-459М»

Измерительные инструменты предназначены для измерения твердости самых разных металлов. В том числе:

  • поверхностноупрочнённых слоёв (например, цементация, закалка ТВЧ, азотирование и т. п.);
  • гальванических покрытий (например, хром);
  • наплавок и т. п.

Твердомеры монтируются во влагозащищенных (прорезиненных) и ударопрочных корпусах, которые позволяют применять их в самых тяжелых климатических условиях. Информация выводится на цветной графический OLED дисплей. Конструкция сохраняет эксплуатационные характеристики твердомера при отрицательных температурах, а дисплей снижает нагрузку на глаза оператора.

Диапазон измерений:

  • по Роквеллу, HRC – 20…70;
  • по Бринеллю, HB – 90…460;
  • по Виккерсу, HV – 230…940.

Преимущества «ТКМ-459С» перед «ТКМ-459М»:

  • на дисплей выводится много полезной дополнительной информации;
  • количество результатов измерений, сохраняемых в памяти: ТКМ-459С, шт.: 12 400;
  • ТКМ-459М, шт.: 6 000;

статистический анализ результатов измерений и вывод его на дисплей, построение графиков;
яркость дисплея и его цветовая палитра выбирается пользователем.

Твердомер ультразвуковой «МЕТ-У1».

Твердомер ультразвуковой «МЕТ-У1»

Этот инструмент, дополнительно к возможностям «ТКМ-459С» и «ТКМ-459М», измеряет твёрдость по шкале Шора «D» (HSD) и определяет предел прочности на растяжение изделий из углеродистых сталей перлитного класса.

Диапазон измерения:

  • по Роквеллу, HRC – 20…67;
  • по Бринеллю, HB – 75…650;
  • по Виккерсу, HV – 75…1000;
  • по Шору, HSD – 23…102;
  • измерения предела прочности, Rm – 378…1736.

Ультразвуковой твердомер «МЕТ-УД»

Ультразвуковой твердомер «МЕТ-УД» измеряет твёрдость по описанному выше методу UCI и по методу отскока (Лейба). Второй метод заключается в определении отношения скоростей индентора до и после соударения с поверхностью контролируемого изделия. Конструктивно он представляет собой комбинированный портативный твердомер, состоящий из пластикового электронного блока MET-УД и двух сменных датчиков:

  • ультразвукового У1. Работает по методу UCI;
  • динамического Д1. Работает по методу Лейба.

Благодаря этому, при помощи инструмента можно оценить изменение твердости закаленного слоя по глубине.

Инструмент экономически целесообразен, т.к. совмещает два твердомера в одном: МЕТ-УД = МЕТ-У1 + МЕТ-Д1.

Твердомер «УЗИТ-3»

Конструкция «УЗИТ-3» даёт возможность измерять твердость крупных и мелких изделий, в том числе, на участках с большой кривизной поверхности, вблизи краев и различных неровностей.

Диапазоны измерений:

  • шкала Бринелля, HB: 80…450;
  • шкала Роквелла, HRC: 20…70.

Габаритные размеры, мм: 140 х 65 х 25.

Твердомер ультразвуковой «ТКМ-459М».

Металлорежущий инструмент

Высокая твердость – обязательное условие для качественного металлорежущего инструмента. Она позволит сохранить остроту кромок, снизит периодичность заточки и прочих сервисных процедур.

Для каждой группы инструмента рекомендованы соответствующие значения по шкале HRC:

  • отрезной инструмент в виде кусачек и бокорезов – от 56 до 61 единицы;
  • зенкеры и зенковки – от 61 до 65 единиц;
  • метчики и плашки – от 61 до 64 единиц;
  • сверла для работы с металлом – от 63 до 69 единиц;
  • фрезы, при производстве которых используется сталь HSS – от 62 до 66 единиц.

Для сверл с покрытием из нитрида титана твердость лезвия HRC должна составлять свыше 80 единиц. Требования обусловлены высокой нагрузкой на инструмент в процессе эксплуатации.

Как измеряется твердость по шкале Роквелла?

Шкала Роквелла измеряет относительную твердость металла. Она основана на том, насколько глубокой является полученная вмятина при ударе тяжелого предмета. Так как же проводят испытания металла?

Во-первых, металл должен быть термически обработан и абсолютно плоским. Иначе результаты теста будут неточными.

Одним из методов является использование конуса с алмазным наконечником для принудительного удара по металлу. Затем тестеры измеряют, насколько глубоко конус проник в поверхность. Затем, это измерение преобразуется в шкалу, которая показывает различные металлы, которые были испытаны, и как они все связаны друг с другом.

Одним из небольших недостатков при испытании клинка ножа является то, что оно оставляет небольшую точечную вмятину на поверхности, что некоторые могут счесть дефектом. Знак испытания может быть скрыт, если испытание проводится в области, которая находится под рукояткой.

Тест Роквелла фактически состоит из двух тестов. Во время первого испытания создается лишь незначительное усилие, используя алмазный наконечник, похожий на карандаш в сверлильном станке. Это гарантирует, что зона испытания абсолютно плоская и является мишенью для основного испытания на давление. После того, как сделано первое измерение, тест повторяется в той же точке. Давление резко возрастает для этого второго теста, при этом приблизительно 150 кг. давления находятся на этом алмазном наконечнике.

Разница между давлением, использованным для первого и второго испытания, представляет собой число твердости по шкале Роквелла. Два (или более) испытания одного и того же куска металла дадут среднее значение для данного конкретного куска стали.

Методика измерения

Метод определения твердости металла по Роквеллу применяется в случае, когда нужно протестировать заготовку небольшой толщины. Кроме этого, подобным образом проверяется твердость поверхностного слоя изделия, к примеру, прошедшего закалку или процесс цементирования.

Проводится определение твердости металлов методом Роквелла следующим образом:

  1. Метод основан на вдавливании более твердого объекта в испытуемый. Для этого используется специальный алмазный наконечник, который имеет форму правильной пирамиды.
  2. Нагрузка прикладывается к наконечнику на протяжении определенного времени. При этом время выдержки и величина нагрузки могут существенно различаться. Согласно установленным стандартам в ГОСТ 9013-59, нагрузка может быть от 1 до 100 кгс. При этом уточняются конкретные значения из этого промежутка.
  3. Полученные отпечатки алмазного конуса измеряются. Наиболее важными показателями в этом случае можно назвать размер диагоналей оставшегося отпечатка.

Принцип измерения твердости по Роквеллу

Полученные данные сверяются с табличными значениями, в которых учитывается величина приложенной силы и время выдержки. Рассматриваемая методика позволяет получить показатель твердости в своих условных единицах.

Процесс измерения можно разделить на несколько этапов:

Определяется тип шкалы.
Устанавливается подходящий индикатор

Важно выбрать индикатор, который будет соответствовать типу установленной шкалы.
Проводится два пробных теста, которые необходимы для корректирования работы применяемого оборудования.
Прикладывается предварительная нагрузка, равная 10 кгс.
Прикладывается основная нагрузка и выдерживается определенный период, который позволяет получить максимальное значение.
Убирается нагрузка и считывается полученный результат.. Современное оборудование позволяет существенно упростить процесс и повысить точность получаемых результатов в ходе проводимых измерений

Современное оборудование позволяет существенно упростить процесс и повысить точность получаемых результатов в ходе проводимых измерений.

Замер твердости по методу Роквелла/Бринелля/Виккерса

Замер твердости по методу Роквелла

Твердость — это способность материала сопротивляться внедрению в его поверхностные слои более твердого тела (индентора). Измерение твердости металлов и сплавов проводят в соответствии с ГОСТ 9013-59.

К образцам для проведения испытания предъявляются следующие требования: толщина образца должна не менее чем в 10 раз превышать глубину внедрения наконечника после снятия основного усилия; шероховатость поверхности образца Ra должна быть не более 2,5 мкм по ГОСТ 2789, если нет других указаний в нормативно-технической документации на металлопродукцию. Свойства образца не должны изменяться в ходе его подготовки в процессе механической обработки и т.д.

Испытание твердости по методу Роквелла производится вдавливанием в исследуемый образец индентора (конус с углом при вершине 120° или стального закалённого шарика D = 1,59 мм под действием двух последовательно воспроизводимых нагрузок. Сначала прилагается предварительная нагрузка (10 кг), а после общая (60,100 или 150 кг, в зависимости от шкалы твердости) рисунок 1. Предварительная нагрузка обеспечивает исключения влияния упругой деформации и разной степени чистоты поверхности образца на результаты измерений. О твердости материала судят по глубине лунки, величина которой определяется в процессе испытания по разности глубин вдавливания индентора под действием двух последовательно приложенных нагрузок.

Рисунок 1. Схема измерения твердости методом Роквелла.

Метод Роквелла получил широкое распространение в производственной и лабораторной практике. Он позволяет определять твердость на готовых деталях, так как на поверхности после измерения остается отпечаток очень малой величины, что не влияет на работу детали. Методом Роквелла можно измерять твердость очень мягких и очень твердых материалов, а также производить замер твердости тонких деталей и поверхностных слоев. Метод имеет высокую производительность.

Однако у метода есть следующие недостатки: необходимость более тщательной подготовки поверхностей детали для испытания, а также требуется строгое соблюдение параллельности исследуемых плоскостей.

Замер твердости по методу Бринелля

По значениям твердости можно оценить прочность материала, его пластичность и вязкость, а также определить, как деталь будет обрабатываться резанием и давлением. Измерение твердости металлов и сплавов по методу Бринелля проводят в соответствии с ГОСТ 9012-59.

Рисунок 2. Отпечаток, получаемый на образце при замере твердости методом Бринелля.

При определении твердости по методу Бринелля в испытываемый образец под нагрузкой (62,5 до 3000 кг) вдавливается индентор – стальной закаленный шарик. При вдавливании шарика на поверхности образца остается отпечаток, по величине которого судят о твердости материала рисунок 2.

Рисунок 3. Схема измерения твердости по методу Бринелля

Метод прост, имеет достаточную точность, минимальные требования к чистоте поверхности по сравнению с другими методами. Однако, на прессе Бринелля нельзя испытывать твердость тонкого материала, толщина испытываемого материала должна быть не меньше десятикратной глубины отпечатка. Нельзя проводить испытания материалов, твердость которых больше 450 ед. НВ, т.к. деформируется индентор.

Замер твердости по методу Виккерса

Измерение твердости по методу Викерса проводят в соответствии с ГОСТ 2999-75. К испытуемым образцам выдвигаются следующие требования: для стальных изделий минимальная толщина образца должна быть больше диагонали отпечатка в 1,2 раза; для цветных металлов определяется в соответсвии с ГОСТ 2999-75 по номограмме.Схема измерения твердости по методу Викерса показана на рисунке 4. Радиус кривизны криволинейных поверхностей должен быть не менее 5 мм. Поверхность испытуемого образца должна иметь шероховатость не более 0,16 мкм по ГОСТ 2789-73 и быть свободной от окисной пленки и посторонних веществ.

Рисунок. 4 Схема измерения твердости по методу Викерса

Основными недостатками метода являются зависимость измеряемой твёрдости от приложенной нагрузки или глубины внедрения индентора, особенно это проявляется при маленьких нагрузках и высокие требования к тщательной подготовке исследуемой поверхности. Достоинства метода в том, что можно измерять твердость тонких образцов, азотированных и цементированных слоев, твердость зерна и отдельных включений.

Измерение твердости по Роквеллу

Этот метод был запатентован в 1914 году Хью М. Роквеллом и Стэнли П. Роквеллом. Испытание на твердость заключается в измерении глубины отпечатка, сделанного алмазным конусом с углом при вершине 120 градусов и радиусом закругления 0,2 мм или твердосплавным шариком диаметром шестнадцатого дюйма (1/16 дюйма = 1,5875 мм), меньше часто диаметром 1/8 дюйма, 1⁄4 дюйма или 1⁄2 дюйма

Что немаловажно, тестируемый образец будет иметь очень небольшой изъян, поэтому часто разрешается проводить проверки даже на готовой продукции. Каждая шкала твердости по Роквеллу помечена HR с дополнительной буквой или буквами, указывающими используемый индентор, а также начальную и общую нагрузку

Всего существует тридцать шкал Роквелла, таких как HRA, HRBW, HRC.

Этот тест на твердость получил признание благодаря его применимости к твердым материалам, а также его скорости и простоте измерения, поскольку твердомер прост в эксплуатации. Речь также идет о небольшом воздействии на тестируемый материал и прямом считывании результатов с прибора (без использования сложных таблиц). Однако у всего есть свои недостатки. В данном случае речь идет о необходимости точного позиционирования тестового объекта, поскольку легко получить неверный результат. Измерения также могут быть неподходящими при неблагоприятных условиях окружающей среды. Метод требует знания многих шкал, и сравнивать их между собой сложно.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: