Обозначения допусков формы и расположения поверхностей на чертежах

ПРИЛОЖЕНИЕ 1

Справочное

ОСНОВНЫЕ
ЗАКОНОМЕРНОСТИ ПОСТРОЕНИЯ РЯДОВ ЧИСЛОВЫХ ЗНАЧЕНИЙ
ДОПУСКОВ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ

1. В качестве
основного ряда числовых значений допусков формы и расположения (табл. 1)
принят ряд предпочтительных чисел R10 с округлением некоторых
значений (3,2 округлено до 3 и 6,3 до 6) до чисел, удобных для отсчета по
шкалам измерительных приборов.

2. Ряды числовых
значений отдельных видов допусков формы или расположения по степеням точности
образованы из числовых значений основного ряда.

3. Для каждого
вида допусков формы или расположения (для которых предусмотрены степени
точности) установлено 16 степеней точности.

4. Числовые
значения допусков формы и расположения от одной степени к другой изменяются с
коэффициентом возрастания 1,6, соответствующим ряду R5, а в пределах
одной степени точности — от одного интервала номинальных размеров к другому по
ряду R10.

5. Числовые
значения допусков плоскостности и прямолинейности (табл. 2) в пределах одной
степени точности изменяются пропорционально ,
где L — среднее
геометрическое крайних значений интервала номинальных размеров (длин). Для
обеспечения этой закономерности интервалы номинальных размеров приняты по ряду R5.

6. Числовые
значения допусков цилиндричности, круглости, профиля продольного сечения (табл.
3) в
пределах одной степени точности изменяются пропорционально  для размеров до 250 мм и
пропорционально  для размеров
свыше 400 мм, где D — среднее
геометрическое крайних значений интервала номинальных размеров (диаметров).
Принятые закономерности близки к установленным формулами единицам допусков
размеров по ГОСТ
25346-89, что облегчает увязку допусков формы с допусками размера. С этой
же целью границы интервалов номинальных размеров в табл. 3
согласованы с интервалами номинальных размеров, принятыми в системе допусков на
размеры (при размерах до 50 мм интервалы табл. 3 соответствуют интервалам,
принятым в ГОСТ
25346-89, а при размерах свыше 50 мм получены попарным объединением
интервалов по ГОСТ
25346-89).

7. Числовые
значения допусков параллельности, перпендикулярности, наклона, торцевого биения
и полного торцевого биения (табл. 4) в пределах одной степени точности изменяются
пропорционально . Для
обеспечения этой закономерности интервалы номинальных размеров приняты по ряду R5 и полностью
соответствуют интервалам номинальных длин, принятым в ГОСТ 8909-81 на допуски
углов. Они совпадают также с интервалами номинальных размеров по табл. 2,
что облегчает взаимную увязку допуском формы и расположения плоских элементов.

8. Числовые
значения допусков радиального биения и полного радиального биения, а также
допусков соосности, симметричности, пересечения осей в диаметральном выражении
(табл. 5)
в пределах одной степени точности изменяются пропорционально  для размеров до 250 мм и
пропорционально  для размеров
свыше 250 мм. Границы интервалов номинальных размеров в табл. 5 согласованы с
интервалами номинальных размеров и табл. 3, что облегчает взаимную увязку
допусков формы, расположения и допуска размера цилиндрических элементов.

Назначение
допусков в диаметральном выражении является предпочтительным.

9. Числовые
значения допусков соосности, симметричности, пересечения осей в радиусном
выражении (табл. 6) получены делением пополам числовых значений
табл. 5 с последующим
округлением их до ближайшего числа из основного ряда числовых значений допусков
по табл. 1.

10. Числовые
значения для отдельных видов допусков формы и расположения при одинаковых
степенях точности, указанные в одной таблице или в разных таблицах,
непосредственно не связаны между собой.

Допуски и посадки, основные понятия, обозначения. Квалитет, нулевая линия, допуск, предельное отклонение, верхнее отклонение, нижнее отклонение, поле допуска. Вариант для печати.

  • Нулевая линия – линия, соответствующая некоему размеру, от которой откладываются отклонения размеров при указании допусков и посадок. Все линии чертежа – нулевые. Размер этот называется номинальным размером.
  • Допуск – диапазон отклонения от нулевой линии. “Отверстие выполнено диаметром А с допуском +0,5” – это означает, что действительный диаметр отверстия находится между диаметром, заданным нулевой линией (номинальный размер=А) и диаметром А+0,5мм.
  • Предельное отклонение – разность между предельным (наиболее отклоняющимся) и номинальным размером.
  • Верхнее отклонение = верхнее предельное отклонение = разница между номинальным и наибольшим предельным размером.
  • Нижнее отклонение = нижнее предельное отклонение = разница между номинальным и наименьшим предельным размером.
Обозначение отклонения Верхнее отклонение Нижнее отклонение
Для отверстия ES EI
Для вала es ei

Поле допуска – диапазон размеров, ограниченный верхним и нижним отклонением от нулевой лини. Положение поля допуска обозначают:

Для отверстия: Прописные (большие) буквы латинского алфавита. A, B, C, CD, D…… Для вала: строчные (маленькие) буквы латинского алфавита. a,b,c,cd……

Отклонение, используемое для указания поля допуска допуска называют основным отклонением – это отклонение поля допуска ближайшее к нулевой линии.

Основное отклонение
Для отверстия от A до H EI (нижнее)
Для отверстия J до ZC ES (верхнее)
Для вала a до h es (верхнее)
Для вала j до zc ei (нижнее)

Отверстие, нижнее отклонение которого равно нулю (не может быть меньше) – называют основным и обозначают английской буквой H.

Вал, верхнее отклонение которого равно нулю (не может быть больше) – называют основным и обозначают английской буквой h.

На рисунке ниже – положение полей допусков (заштриховано) относительно нулевой линии. Слева указаны отрицательные или положительные отклонения.

Посадка – характер соединения узлов (деталей), определяемый величиной существующих в нем зазоров или натягов. Различают посадки с зазором, посадки с натягом и переходные (промежуточные) посадки.

Посадки в системе отверстия – предпочтительнее на практике (исторически) , см. рисунок ниже:

Посадки в системе вала, смотри рисунок ниже:

Квалитет – установленная совокупность допусков, определяющая допуск для данного линейного размера (одинаковая степень точности для всех номинальных размеров). Величнины полей допусков обозначают буквами IT и порядковым номером квалитета.

Назначения допусков формы и расположения

Основные положения, поясняющие назначение каждого из них, приведены в ГОСТ 24643-81. Допуски формы и расположения поверхностей позволяют выбрать способ, инструмент, порядок для обработки. Кроме этого допуски формы и расположения поверхностей определяют условия эксплуатации отдельных изделий составляющих конкретный механизм, его надёжность и долговечность.

Числовые значения допусков формы

В современном стандарте для точности обработки утверждено 16 классов. Их числовые значения возрастают от одного класса к другому. Прирост точности происходит в 1,6 раза. Стандарт определяет три основных уровня, которые обозначаются заглавными буквами латинского алфавита: «А», «В» и «С». Каждый из уровней определяет следующие положения:

  • первой (литера А) признаётся нормальная точность, которая составляет не менее 60 % от погрешностей всех указанных размеров;
  • вторая геометрическая точность (литера В) относится к категории повышенной точности (обычно она равна около 40% допусков для всех применяемых деталей);
  • наивысшей степенью точности является третий уровень (литера С), которая не превышает 25% от всех использованных погрешностей.

Числовые значения допусков формы цилиндрических поверхностей, устанавливаются для каждого из трёх уровней. Согласно стандарту они не должны превышать 30% для первого уровня, 20% для второго и 12% для третьего. Это связано с применяемыми ограничениями при отклонении радиуса изделия, с помощью указания места расположения установленного размера.

Допуски плоскости и прямолинейности

Оценка соблюдения параметров плоскости осуществляется путём сравнения с характеристиками выбранной базой. Базой служит отдельный элемент детали, которые однозначно считают плоскими. Характер и расположение прямолинейного участка уточняется по результатам сравнения со своей базой. Каждый из разрешённых изменений обозначается установленным значком. В сноске к этому знаку указывают расположение и величину установленного отклонения. Допуск устанавливается для линий и плоскостей различного порядка. Все разрешённые изменения размеров объединяют единым полем.  Общепризнанными изменения характера прямолинейности считаются выпуклость и вогнутость. Расположение и параметры отклонения от заданной плоскости обозначаются аббревиатурой (EFE). Для описания характеристик прямолинейности приняты показатели, входящие в единый комплект, обозначаемый (EFL).

Допуски круглости, цилиндричности профиля продольного сечения

Под понятием цилиндричности понимают сходство изготовленного изделия с параметрами аналогичного цилиндра. Его диаметр, длина, расположение должны соответствовать указанным в технической документации. Для сравнения  выбирают цилиндр с прилегающей (контрольной) поверхностью, имеющей меньший диаметр. Он может быть свободно вписан в реальную внутреннюю поверхность. Установленные отклонения от цилиндричности позволяют установить соответствие обработанной детали заданной форме. Расположение указанных отклонений определяют конечный вид изделия, её место установки в агрегате после сборки. Это служит главным отличием от изменений профиля продольного сечения и так называемой круглости. Они задают только один параметр отклонения от точек расположенных на заготовке. Под отклонением от так называемой круглости понимают наибольшее расстояние, задающее расположение точек на поверхности детали по отношению к прилегающей окружности. Под этой окружностью понимают окружность с большим радиусом, описанную вокруг наружной поверхности вращения, с минимальным диаметром, который устанавливает самое близкое расположение между точками этих окружностей. Наиболее встречаемыми отклонениями являются овальность и огранка.

Контроль величины этих изменений производится с помощью специальных измерительных устройств. К ним относятся: специальные шаблоны, координатно-измерительные машины, так называемые «кругломеры».

Допуски перпендикулярности, параллельности, наклона торцевого биения

В процессе эксплуатации элементов конструкции агрегата, имеющего цилиндрическую форму, наблюдается эффект так называемого торцевого биения. Предотвращения негативных последствий устраняется установлением разрешённых отклонений от утверждённых размеров. Эти значения наносятся на протяжении всей заготовки.

Допуск устанавливает величину и характер торцевого биения. Для отдельных случаев его величину задают относительно наибольшего диаметра торцевой поверхности, расположенной в готовом агрегате.

Допуски формы цилиндрических поверхностей в зависимости от квалитета допуска размера

Допуск в мкм

Интервалы номинальных размеров, мм Квалитеты допуска размера
4 5 6 7 8 9 10 11 12
Относительная геометрическая точность
А В С А В С А В С А В С А В С А В С А В С А В С А В С
≤ 3 0,8 0,5 0,3 1,2 0,8 0,5 2 1,2 0,8 3 2 1,2 5 3 2 8 5 3 12 8 5 20 12 8 30 20 12
> 3 ≤ 6 1 0,6 0,4 1,6 1 0,6 2,5 1,6 1 4 2,5 1,6 6 4 2,5 10 6 4 16 10 6 25 16 10 40 25 16
> 6 ≤ 10 1 0,6 0,4 1,6 1 0,6 2,5 1,6 1 4 2,5 1,6 6 4 2,5 10 6 4 16 10 6 25 16 10 40 25 16
> 10 ≤ 18 1,2 0,8 0,5 2 1,2 0,8 3 2 1,2 5 3 2 8 5 3 12 8 5 20 12 8 30 20 12 50 30 20
> 18 ≤ 30 1,6 1 0,6 2,5 1,6 1 4 2,5 1,6 6 4 2,5 10 6 4 16 10 6 25 16 10 40 25 16 60 40 25
> 30 ≤ 50 2 1,2 0,8 3 2 1,2 5 3 2 8 5 3 12 8 5 20 12 8 30 20 12 50 30 20 80 50 30
> 50 ≤ 80 2,5 1,6 1 4 2,5 1,6 6 4 2,5 10 6 4 16 10 6 25 16 10 40 25 16 60 40 25 100 60 40
> 80 ≤ 120 2,5 1,6 1 4 2,5 1,6 6 4 2,5 10 6 4 16 10 6 25 16 10 40 25 16 60 40 25 100 60 40
> 120 ≤ 180 3 2 1,2 5 3 2 8 5 3 12 8 5 20 12 8 30 20 12 50 30 20 80 50 30 120 80 50
> 180 ≤ 250 3 2 1,2 5 3 2 8 5 3 12 8 5 20 12 8 30 20 12 50 30 20 80 50 30 120 80 50
> 250 ≤ 315 4 2,5 1,6 6 4 2,5 10 6 4 16 10 6 25 16 10 40 25 16 60 40 25 100 60 40 160 100 60
> 315 ≤ 400 4 2,5 1,6 6 4 2,5 10 6 4 16 10 6 25 16 10 40 25 16 60 40 25 100 60 40 160 100 60
> 400 ≤ 500 5 3 2 8 5 3 12 8 5 20 12 8 30 20 12 50 30 20 80 50 30 120 80 50 200 120 80
> 500 ≤ 630 5 3 2 8 5 3 12 8 5 20 12 8 30 20 12 50 30 20 80 50 30 120 80 50 200 120 80
> 630 ≤ 800 6 4 2,5 10 6 4 16 10 6 25 16 10 40 25 16 60 40 25 100 60 40 160 100 60 250 160 100
> 800 ≤ 1000 6 4 2,5 10 6 4 16 10 6 25 16 10 40 25 16 60 40 25 100 60 40 160 100 60 250 160 100
> 1000 ≤ 1250 8 5 3 12 8 5 20 12 8 30 20 12 50 30 20 80 50 30 120 80 50 200 120 80 300 200 120
> 1250 ≤ 1600 8 5 3 12 8 5 20 12 8 30 20 12 50 30 20 80 50 30 120 80 50 200 120 80 300 200 120
> 1600 ≤ 2000 10 6 4 16 10 6 25 16 10 40 25 16 60 40 30 100 60 40 160 100 60 250 160 100 400 250 160
> 2000 ≤ 2500 10 6 4 16 10 6 25 16 10 40 25 16 60 40 30 100 60 40 160 100 60 250 160 100 400 250 160

Числовые значения допусков формы цилиндрических поверхностей указанные в табл. 1 для уровней А, В и С, соответствуют степеням точности по ГОСТ24643-81.

Уровни относительной геометрической точности и соответствующие им степени точности формы цилиндрических поверхностей приведены в

Квалитет допуска размера 4 5 6 7 8 9 10 11 12
Уровень геометрической точности А В С А В С А В С А В С А В С А В С А В С А В С А В С
Степень точности по ГОСТ24643-81 3 2 1 4 3 2 5 4 3 6 5 4 7 6 5 8 7 6 9 8 7 10 8 8 11 10 9

Допуски прямолинейности, плоскостности и параллельности, соответствующие уровням А, В п С относительной геометрической точности в зависимости от квалитета допуска размера, приведены в табл. 3.

6 Общие допуски расположения и биения

6.1 Общий допуск параллельности равен допуску размера между рассматриваемыми элементами. За базу следует принимать наиболее протяженный из двух рассматриваемых элементов. Если два элемента имеют одинаковую длину, то в качестве базы может быть принят любой из них.

6.2 Общие допуски перпендикулярности должны соответствовать приведенным в . За базу следует принимать элемент, образующий более длинную сторону рассматриваемого прямого угла. Если стороны угла имеют одинаковую номинальную длину, то в качестве базы может быть принята любая из них.

Размеры в миллиметрах

Класс точности

Общие допуски перпендикулярности для интервалов номинальных длин более короткой стороны угла

до 100

св. 100 до 300

св. 300 до 1000

св. 1000 до 3000

Н

0,2

0,3

0,4

0,5

К

0,4

0,6

0,8

1,0

L

0,6

1,0

1,5

2,0

6.3 Общие допуски симметричности и пересечения осей должны соответствовать приведенным в . За базу следует принимать элемент с большей длиной. Если рассматриваемые элементы имеют одинаковую длину, то в качестве базы может быть принят любой из них.

Размеры в миллиметрах

Класс точности

Общие допуски симметричности и пересечения осей для интервалов номинальных дайн более короткой стороны угла

до 100

св. 100 до 300

св. 300 до 1000

св. 1000 до 3000

Н

0,5

К

0,6

0,8

1

L

0,6

1,0

1,5

2

Примечание – Допуски симметричности и пересечения осей указаны в диаметральном выражении.

6.4 Общие допуски радиального и торцового биения, а также биения в заданном направлении (перпендикулярно к образующей поверхности) должны соответствовать указанным:

Класс точности

Допуск биения, мм:

Н

0,1

К

0,2

L

0,5

За базу следует принимать подшипниковые (опорные) поверхности, если они могут быть однозначно определены из чертежа, например, заданные как базы для указанных допусков биения. В других случаях за базу для общего допуска радиального биения следует принимать более длинный из двух соосных элементов. Если элементы имеют одинаковую номинальную длину, то в качестве базы может быть принят любой из них.

6.5 Общие допуски соосности применяются в случаях, когда измерение радиального биения невозможно или нецелесообразно. Общий допуск соосности в диаметральном выражении следует принимать равным общему допуску радиального биения.

Отклонения и допуски формы поверхностей

Отклонения и допуски формы (ГОСТ24462-83)

ОТКЛОНЕНИЕ ФОРМЫ — отклонение формы реальной поверхности или реального профиля от формы номинальной поверхности или номинального профиля.

СРЕДНИЙ ЭЛЕМЕНТ — поверхность (профиль), имеющая форму номинальной поверхности (профиля).

При отсчете от среднего элемента отклонение формы равно сумме абсолютных значений наибольших отклонений точек реальной поверхности (профиля) по обе стороны от среднего элемента (рис.)

Количественно отклонение формы оценивается наибольшим расстоянием от точек реальной поверхности (профиля) до прилегающей поверхности (профиля) по нормали к прилегающей поверхности (профилю).

Допуск формы (T) — наибольшее допустимое значение отклонения формы.

Поле допуска формы — область в пространстве или на плоскости, внутри которой должны находиться все точки реального рассматриваемого элемента в пределах нормируемого участка (L).

Ширина или диаметр поля допуска определяется значением допуска, а расположение относительно реальной поверхности определяется прилегающим элементом.

К отклонениям и допускам формы относятся:

  • отклонение от плоскостности, допуск плоскостности;
  • отклонение от прямолинейности, допуск прямолинейности;
  • отклонение от круглости, допуск круглости;
  • отклонение от цилиндричности, допуск цилиндричности;
  • отклонение и допуск профиля продольного сечения цилиндрической поверхности.

Приняты следующие условные обозначения:

Δ — отклонение формы или отклонение расположения поверхностей;

Т — допуск формы или допуск расположения;

L — длина нормируемого участка.

Отклонение от прямолинейности в плоскости — наибольшее расстояние от точек реального профиля до прилегающей прямой в пределах нормируемого участка.

Частными видами отклонения от прямолинейности являются выпуклость и вогнутость.

Выпуклость — отклонение от прямолинейности, при котором удаление точек реального профиля от прилегающей прямой уменьшается от краев к дине.

Вогнутость — отклонение от, прямолинейности при котором удаление точек реального профиля от прилегающей прямой увеличивается от краев к середине.

Отклонение от плоскостности — наибольшее расстояние Δ от точек реальной поверхности до прилегающей плоскости в пределах нормируемого участка.

Частными видами отклонения от прямолинейности являются выпуклость и вогнутость.

Отклонение профиля продольного сечения цилиндрической поверхности — наибольшее расстояние Δ от точек образующих реальной поверхности, лежащих в плоскости, проходящей через ее ось, до соответствующей стороны прилегающего профиля в пределах нормируемого участка.

Частными видами отклонения профиля продольного сечения являются конусообразность, бочкообразность и седлообразность.

Конусообразность — отклонение профиля продольного сечения, при котором образующие прямолинейны, но не параллельны.

Бочкообразность — отклонение профиля продольного сечения, при котором образующие непрямолинейны и диаметры увеличиваются от краев к середине сечения.

Седлообразность — отклонение профиля продольного сечения, при котором образующие непрямолинейны и диаметры уменьшаются от краев к середине сечения.

Отклонение от цилиндричности — наибольшее расстояние Δ от точек реальной поверхности до прилегающего цилиндра в пределах нормируемого участка.

Отклонение профиля продольного сечения цилиндрической поверхности — наибольшее расстояние Δ от точек образующих реальной поверхности, лежащих в плоскости, проходящей через ее ось, до соответствующей стороны прилегающего профиля в пределах нормируемого участка.

Частными видами отклонения профиля продольного сечения являются конусообразность, бочкообразность и седлообразность.

Конусообразность — отклонение профиля продольного сечения, при котором образующие прямолинейны, но не параллельны.

Бочкообразность — отклонение профиля продольного сечения, при котором образующие непрямолинейны и диаметры увеличиваются от краев к середине сечения.

Седлообразность — отклонение профиля продольного сечения, при котором образующие непрямолинейны и диаметры уменьшаются от краев к середине сечения.

Обозначение посадок на сборочных чертежах и их применение.

1) ф100мм. — сопрягаемый размер 2) Н7/d11 — дробь и есть тип посадки , где Н7 — поле допуска Н и квалитет 7 отверстие

d11 — поле допуска d и квалитет 11вала

4.Технология нарезания наружной резьбы. Технология нарезания внут­ренней резьбы.

Нарезание наружней резьбы на детали типа ВАЛ : Инструмент нарезки Лерка , Плашка ; по конструкции бывает

цельные, разьемные , раздвижные . На плашке маркеровка

Технология нарезания : замерить ф вала , проверить фазку, закрепить деталь в тисах вертикально , выбрать плашку по

маркеровке, установить в плашка держатель , нарезать резьбу с подачей масла, контроль резьбы с сопрягаемой деталью

Нарезание внутренней резьбы : инструмент нарезки метчик ручной, в комплект ручного метчика входит два или 3 метчика ,

отличаются по разборной части и штрихам на хвоставике (1.2), маркеруется — тип, диаметр и шаг резьбы.

Нарезание : просверлить черновое отверстие , выбрать метчик по маркеровке ,установить соостно отверстие, вставить

вороток , нарезать резьбу с подачей масла, контроль нарезки с сопрягаемой деталью.

Соединение деталей при помощи шпонки. Виды шпонок.

Шпоночное соединение — это разьемное соединение вала с детально посаженной на вал . Могут быть подижны и не

подвижны , служат для передачи вращения от вала к детали.

Достоинства — простота конструкции .Прочность , надежность, взаимозаменяемость — стандартные изделия . Длинные

шпонки , скользящие и направляющие дают подвижность соединения . Могут применяться как предохранительные

элемент. Недостатки — шпоночный паз концентрирует напряжение.

Виды шпонок: призматические , сегментные , клиновые , скользящие и направляющие — дает подвижное соединение.

Сборка шпоночных соединений: определить тип посадки по сборочному чертежу шпонка ,вал, переходная отверстие

вал, с натягом; проверить сопряжение размеры фазки ; призматическую шпонку вставить в паз вала отверстие посадить на вал с нагревом или на прессе ;

центровка ; призматическая шпонка работает боковыми гранями при монтаже дает радиальный тепловой зазор ;

клиновая шпонка работает верхней и нижней гранью при монтаже даем боковой тепловой зазор; проверка детали на биение

Дефекты и ремонт шпоночных соединений. срез шпонки (замена, ремонт); разбит шпоночный паз ( ремонт, расточить

паз на большую шпонку .наплавка , проточка паза , упрочнение); дефект сборки( демонтаж , монтаж)

Билет 15

Методы предупреждения несчастных случаев на производстве.

Инструктажи по ТБ (вводный , первичный , повторный , внеплановый, целевой); применение спец одежды , исправный

инструмент, СИЗ; выполнение ключ — бирочной системы; наряд допуск; предупредительный , слуховые , световые , звуковая сигнализация ,

блокировки , автоматизация процесса; все виды испытаний оборудования;

2.Консистентные (густые) смазки. Их классификация. Применение. Спо­собы подвода смазки к местам смазки.

Это мази , пасты, минеральные или синтетические работают в тяжелонагруженных режимах при малых и средних

скоростях. Получают путем введения загустителя в масло.

Классификация: с натриевым загустителем — невлагостойкая темп. -25+125* ; с кальциваемым загучтителем — влагостойка.

темп. -10 +85* относится солидол УС1.2 УСА; со смешанными загустителем Na+ Ca — влагостойкая темп. -25 +125*

смазка индустриальная прокатная ИП-1 ; с литиевым загустителем — влагостойкая , противозадирная антифрикционная

темп. -60 +160* литол , сиол для скоростных подшипников.

Способы подвода к места трения : закладывается лопатками , шприцами ручными в узел .Обьем смазки определяем

на глаз ; насос ручной густой — служит для лозированной подачи смазки в несколько узлов трения ;

Автоматическая станция густой смазки — служит для подачи одного сорта смазки через дозировочные питатели на несколько агрегатов.

Основные отклонения

Основные отклонения стандартизованы (ГОСТ 25346-2013). Предусмотрено по 27 вариантов основных отклонений для валов и отверстий. Каждому из основных отклонений соответствует определенный уровень относительно номинального размера (на схемах – относительно нулевой линии), от которого должен начинаться интервал допуска (рис. 2).

Значения основных отклонений, как правило, независимы от допусков. Каждое расположение основного отклонения обозначается латинской буквой – малой для валов и большой для отверстий. Для дополнительных отклонений, введенных в систему ISO, обозначение состоит из двух букв. Это либо отклонения, занимающие промежуточное положение между двумя соседними отклонениями (cd, ef, fg), либо отклонения, располагающиеся за отклонением z (za, zb, zc).

Ряды основных отклонений для отверстий и валов построены на основе правил – общего и специального. Согласно общему правилу, основные отклонения отверстий равны по значению и противоположны по знаку основным отклонениям валов. Например, основные отклонения EI для отверстий от A до H и основные отклонения es для валов от a до h равны по модулю. Для построения некоторых основных отклонений отверстий применяется специальное правило.

а)

б)

Рисунок 2 – Схемы расположения основных отклонений отверстий (а) и валов (б)

Буквой h обозначается верхнее отклонение вала, равное нулю; буквой H – нижнее отклонение отверстия, равное нулю. Буквами js, JS обозначаются симметричные расположения интервалов допусков вала и отверстия относительно нулевой линии.

Классы точности.

Точность изготовления характеризуется величиной допускаемых отклонений от заданных размеров и формы. Для разных машин требуются детали с различной точностью обработки. Очевидно, что детали плуга, дорожного катка и других сельскохозяйственных и дорожных машин могут быть изготовлены менее точно, чем детали фрезерного станка, а детали фрезерного станка требуют меньшей точности, чем детали измерительного прибора. В связи с этим в машиностроении детали разных машин изготовляют по разным классам точности. В СССР (были) приняты десять классов точности.

  • пять из них: 1-й, 2-й, 2а, 3-й, За — требуют наибольшей точности обработки;
  • два других: 4-й и 5-й — меньшей;
  • три остальных: 7-й, 8-й, 9-й — еще меньшей.

Применение классов точности в различных областях

  • 1-й класс точности применяют при изготовлении особо точных изделий. Вследствие очень малых допусков работа по 1-му классу точности требует высокой квалификации рабочего и точного оборудования, приспособлений и инструмента.
  • 2-й и 2а классы точности применяют наиболее часто. По ним изготовляют ответственные детали станков, автомобильных, тракторных, авиационных и электрических двигателей, текстильных и других машин.Наряду с этим в отраслях машиностроения, выпускающих указанные машины, детали менее ответственных соединений из­готовляют по 3-му, 4-му, 5-му и другим более грубым классам точности.
  • 3-й и За классы точности применяют главным образом в тяжелом машиностроении при производстве турбин, паровых машин, двигателей внутреннего сгорания, трансмиссионных деталей и т. д.
  • По 4-му классу точности изготовляют детали сельскохозяйственных машин, паровозов, железнодорожных вагонов и т. д.
  • 5-й класс точности применяют в машиностроении для неответственных деталей менее точных механизмов.
  • 7-й, 8-й и 9-й классы точности применяют при изготовлении более грубых деталей и особенно при заготовительных операциях: литье, штамповке, медницко-слесарных работах и т. д.
  • Свободные размеры деталей выполняют обычно по 5-му или 7-му классам точности.

Чтобы показать, с какой посадкой и по какому классу точности нужно изготовить деталь, в чертежах на номинальных сопрягаемых размерах ставится буква, обозначающая посадку, и цифра, соответствующая классу точности. Например, С4 означает: скользящая посадка 4-го класса точности; Х3 — ходовая посадка 3-го класса точности и т. п. Для посадок 2-го класса точности (особенно широко распространенных) цифра 2 не ставится. Поэтому, если в чертеже на сопрягаемом размере рядом с буквой посадки нет цифры, то это значит, что деталь надо изготовить по 2-му классу точности. Например, Л означает легкоходовая посадка 2-го класса точности.

Допуски формы

Этот вид разрешённых отклонений вызван неточностями обработки, которые происходят из-за реальных возможностей обрабатывающего оборудования.

К ним относятся:

  • прямолинейности;
  • плоскости;
  • не совпадения формы окружности (к ним относятся: круглости; допуск овальности);
  • изменение формы цилиндра — допуск цилиндричности.

К первой категории относятся следующие отклонения:

  • формы обработанной поверхности (нарушается плоскостная картина, изменяется величина радиуса выточенного вала, нарушается геометрия фигур имеющих плоские грани);
  • нарушается параллельность и перпендикулярное расположение поверхностей между собой или соседними деталями;
  • проявляется разная шероховатость по длине, поперечному сечению, окружности.

Оценка величины параметров производится сравнением номинальной поверхности (обозначенной на чертеже) и реальной (полученной на станках заданного класса точности). Полученные отклонения и позволяют рассчитать величину требуемого допуска.

Изменение величины радиуса готового изделия по отношению к заданному на чертеже, называется нарушение круглости. Для предотвращения возможных негативных последствий при эксплуатации вводят допуск круглости. При рассмотрении детали в одной из плоскостей определяют необходимый допуск профиля продольного сечения.

Характер взаимного искривления расположения плоскостей подразделяется на следующие виды:

  • общей параллельности (сравнивается с линией направленной вдоль поверхности);
  • перпендикулярности и пересечения осей (проверяется сохранение прямого угла на всём протяжении поверхностей);
  • наклона;
  • симметрии (по отношению к выбранной оси).

Допуск плоскостности определяет величину разрешённого отклонения от обозначенного уровня. Основной характеристикой служит так называемое поле допуска. Его обозначают в выбранной области, которая расположена между плоскостями, для которых необходимо соблюдать строгие параметры параллельности. Расстояние до поверхности определяется существующими стандартами. Контроль отклонения этих параметров от заданных на чертеже обозначается на профилограмме.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: