Нитинол характеристика сплава с памятью формы

дальнейшее чтение

  • HR Chen, ред., Сплавы с памятью формы: производство, свойства и применение , Nova Science Publishers, Inc. , 2010, ISBN  978-1-60741-789-7 .
  • YY Chu & LC Zhao, ред., Материалы с памятью формы и их приложения , Trans Tech Publications Ltd., 2002, ISBN  0-87849-896-6 .
  • Д.С. Лагудас, изд., Сплавы с памятью формы , Springer Science + Business Media LLC, 2008, ISBN  978-0-387-47684-1 .
  • К. Оцука и С.М. Уэйман, редакторы, Материалы с памятью формы , Cambridge University Press, 1998, ISBN  0-521-44487-X
  • Джеральд Жюльен, Nitinol Technologies, Inc Edgewood, Wa. Патент США «6422010 Производство деталей и форм из нитинола.

Процесс изготовления деталей и форм из нитинола типа 60, обладающих эффектом памяти формы, включающий: выбор нитинола типа 60. Изобретатель G, Жюльен, генеральный директор Nitinol Technologies, Inc. (штат Вашингтон)

Эффект памяти

Эффект памяти формы нитинола стал возможен благодаря изменению кристаллической решетки во время полиморфного превращения из фазы аустенита в фазу мартенсита.

Схема фазовых изменений нитинола

Нагретый сплав имеет исходную фазу – аустенит. При понижении температуры сплава исходная фаза самопроизвольно переходит в дочернюю фазу – мартенсит. Процесс обратимый, поэтому при нагревании холодного нитинола фазовое превращение протекает в обратной последовательности. К тому же скорость превращения занимает доли секунды.

Температурные интервалы между началом и концом фазовых изменений выражены точками Ан, Ак для аустенита и Мн, Мк для мартенсита. Температурный диапазон составляет порядка 30°С.

Температурные интервалы

Обладают эффектом памяти формы и другие сплавы, созданные на основе нитинола. При введении в него химических элементов как Fe, Mn, Cr, V, Ko температурный диапазон мартенситного превращения опускается до значения -190°С. Напротив Zn, No, Ta увеличивают данное значение почти до 100°С.

Как проводится нитевой лифтинг?

Сначала врач проводит консультацию и определяет схему лечения. Затем на проблемные участки пациента наносится обезболивающий крем. Через 20-40 минут его снимают и поверхность кожи обрабатывается антисептиком. Пациентам с повышенной чувствительностью делают местную инъекционную анестезию. Затем, с помощью ультратонких игл или канюль рассасывающиеся нити вводятся под кожу. В методике Luxeface мини-проколы делаются в волосистой части головы, которые заживают в течение 5-7 дней. Таким образом, процесс заживления проходит еще комфортнее для пациента.

Нити размещаются по строго определенным линиям. После процедуры врач наносит пациенту маску для ускорения реабилитации и дает рекомендации. В целом манипуляция занимает от 1 до 2,5 часов, а после пациент спокойно может вернуться к обычным делам.

Если говорить о нерассасывающихся нитях, то схема лечения отличается. Их специально закрепляют под кожей – врач делает небольшие разрезы в районе виска и крепит нить к костной структуре, а после накладывает швы. Это более сложная манипуляция, поэтому выполнять ее непременно должен хирург, а не косметолог.

Классификация стероидных гормонов

Стероидные гормоны делятся на пять классов, отличающихся по структуре и функции:

  • Минералокортикоиды. Особенно активный представитель минералокортикоидов – альдостерон. Среди прочего, они регулируют распределение воды и ионов натрия и калия.
  • Глюкокортикоиды. Наиболее активный из них — кортизол, или гидрокортизон. Глюкокортикоиды стимулируют глюконеогенез, обеспечивая местный липолиз и одновременно липогенез в других частях тела.
  • Эстрогены. Отвечают за половое созревание и возникновение менструаций, облегчают отложение кальция в костях, предотвращая остеопороз, повышают свертываемость крови и количество хорошего холестерина.
  • Гестагены. Основной представитель гестагенов — прогестерон. Это гормон беременности. Его задача – подготовить матку к имплантации яйцеклетки, а затем сохранить беременность.
  • Андрогены. Самый активный андроген – тестостерон. Андрогены инициируют процесс созревания. Также от них зависит внешний вид кожи: когда концентрация андрогенов в крови достаточно высока, она гладкая и здоровая. Андрогены также влияют на половое влечение, способствуют выработке эритроцитов в костном мозге, положительно влияют на кальциевую экономику организма. Они добавляют энергии и силы к действию и обеспечивают хорошее самочувствие.

История

Слово нитинол является производным от его состава и его место открытия: ( Ni ckel Ti tanium- Н аваль О rdnance л aboratory). Уильям Дж. Бюлер вместе с Фредериком Вангом обнаружили его свойства во время исследований в Военно-морской артиллерийской лаборатории в 1959 году. Бюлер пытался создать лучшую носовую часть ракеты, которая могла бы противостоять усталости , теплу и силе удара . Обнаружив, что сплав никеля и титана в соотношении 1: 1 может справиться с этой задачей, в 1961 году он представил образец на собрании руководства лаборатории. Образец, сложенный как гармошка , разносился и сгибался участниками. Один из них приложил к образцу тепло от своей зажигалки, и, к всеобщему удивлению, полоска в форме гармошки сжалась и приняла прежнюю форму.

Хотя потенциальные возможности применения нитинола были реализованы немедленно, практические усилия по коммерциализации сплава были предприняты только десятилетие спустя. Эта задержка была в значительной степени из-за необычайной сложности плавления, обработки и механической обработки сплава. Даже эти усилия столкнулись с финансовыми проблемами, которые не удалось легко преодолеть до 1980-х годов, когда эти практические трудности наконец начали разрешаться.

Открытие эффекта памяти формы в целом относится к 1932 году, когда шведский химик Арне Оландер впервые обнаружил это свойство в сплавах золото-кадмий. Такой же эффект наблюдался в Cu-Zn ( латунь ) в начале 1950-х годов.

Производство

Производство сплава — достаточно сложный процесс, состоящий из нескольких стадий:

Плавка
Переплавка
Литьё
Придание необходимой формы

Производство осложнено тем, что для получения высококачественного сплава, необходимо тщательно выверять количество первичных компонентов, а при плавлении титан легко взаимодействует с газами, из за чего плавка проходит с использованием вакуумно-индукционного метода и вакуумно-дуговой переплавки. Так же термообработка нитинола требует высокой точности, так как длительность и температура сильно влияют на температуры фазового превращения.

При вакуумно-индукционном методе исходный слиток готовят в графитовых печах . Это позволяет получить хорошо смешанный сплав, но при этом возникает некоторое количество соединения титана с углеродом. Вакуумно-дуговая переплавка необходима для уменьшения содержания примесей и включений, а так же обеспечения необходимой литой структуры. Далее следуют литьё для получения заготовок и придание необходимой формы заготовкам.

Применение

Благодаря своим уникальным качествам нитинол получил практическое применение во многих сферах нашей жизни:

  • Космическая и авиационная отрасли:
    1. антенны для искусственных спутников;
  • плотные соединения (муфты), работающие в вакууме при низких температурах;

соединения авиационных элементов;

  • Системы безопасности:
    1. предохранители;
  • тепловые датчики пожарной сигнализации;

автоматическое открывание рам для теплиц;

  1. регулятор температуры;
  2. бойлеры;
  • Роботизация (5 степеней подвижности одного узла);
  • Автомобильная отрасль:
    1. датчик температуры охлаждающей жидкости;
  • включение противотуманок;
  • Нефтедобывающая отрасль (автоматизированное управление);
  • Медицина:
    1. сетки;
  • нити;

костные импланты;

  1. штифты;
  2. фиксаторы;
  3. приспособления для реабилитации;
  • Мода;
  • Ювелирные украшения.

Самописцы в качестве привода используют нитинол. При подаче напряжения, когда изменяются контролируемые параметры, нитиноловая проволока нагревается. Происходит изменение длины проволоки, и перо с чернилами перемещается по диаграмме.

Производство никелида титана

Плавку производят в вакуумно-гарнисажной или электродуговой печи с расходуемым электродом в защитной атмосфере (гелий или аргон). Шихтой в обоих случаях служит йодидный титан или титановая губка, спрессованная в брикеты, и никель марки Н-0 или Н-1. Для получения равномерного химического состава по сечению и высоте слитка рекомендуется двойной или тройной переплав. При выплавке в дуговой печи рекомендуется сила тока в 1,2 кА, напряжение — 40 В, давление гелия — 53 МПа. Оптимальный режим остывания слитков с целью предотвращения растрескивания — охлаждение с печью (не больше 10 ˚C/с). Удаление поверхностных дефектов — обдирка наждачным кругом. Для более полного выравнивая химического состава по объёму слитка проводят гомогенизацию при температуре 950—1000 ˚C в инертной атмосфере.

Эффект памяти

Эффект памяти формы нитинола стал возможен благодаря изменению кристаллической решетки во время полиморфного превращения из фазы аустенита в фазу мартенсита.

Схема фазовых изменений нитинола

Нагретый сплав имеет исходную фазу – аустенит. При понижении температуры сплава исходная фаза самопроизвольно переходит в дочернюю фазу – мартенсит. Процесс обратимый, поэтому при нагревании холодного нитинола фазовое превращение протекает в обратной последовательности. К тому же скорость превращения занимает доли секунды.

Температурные интервалы между началом и концом фазовых изменений выражены точками Ан, Ак для аустенита и Мн, Мк для мартенсита. Температурный диапазон составляет порядка 30°С.

Температурные интервалы

Обладают эффектом памяти формы и другие сплавы, созданные на основе нитинола. При введении в него химических элементов как Fe, Mn, Cr, V, Ko температурный диапазон мартенситного превращения опускается до значения -190°С. Напротив Zn, No, Ta увеличивают данное значение почти до 100°С.

Похожие новости

14/12/2018

​Ученые Томского политехнического университета (ТПУ) к концу 2020 года планируют создать аппаратно-программный комплекс, который позволит легко и безопасно делать коллиматоры – устройства, защищающие здоровые ткани во время лучевой терапии; проект получил грант РНФ в размере 15 миллионов рублей, сообщил РИА Томск доцент Инженерной школы ядерных технологий ТПУ Юрий Черепенников.

1132

07/09/2018

Доцент Инженерной школы новых производственных технологий Томского политехнического университета Дамир Валиев представил исследование на одной из ведущих международных конференций по физике оптических материалов и устройств «ICOM 2018 Conference on the Physics of Optical Materials and Devices​», которая недавно прошла в городе Игало (Черногория).

728

04/09/2019

​Проект «Цитируемые ученые ТПУ» подводит итоги публикационной активности ученых Томского политехнического университета за летний период. Самый высокоцитируемый соавтор статей ученых ТПУ имеет индекс Хирша 75, а самый высокорейтинговый журнал — импакт-фактор 9,405 (Green Chemistry, Q1).

995

29/06/2019

​Сотрудники СФТИ ТГУ при поддержке РНФ проводят исследования предела функциональных возможностей никелида титана – самого популярного материала с памятью формы. Ученые анализируют поведение сплава в условиях высокой температуры и повышенной нагрузки, а также создают новые режимы термообработки для улучшения функциональных свойств.

570

31/07/2019

​Физики Томского государственного университета (ТГУ) на основе дешевых материалов создали синие органические светоизлучающие диоды (OLED — organic light emitting diode), которые необходимы для создания дисплеев телефонов и телевизоров.

515

07/11/2019

​В числе стипендиатов Президента РФ — четыре студента и семь аспирантов Томского политехнического университета. Стипендию Правительства России будут получать 13 студентов и семь аспирантов. В течение учебного года, помимо основной, они ежемесячно будут получать дополнительную стипендию.

774

30/03/2017

В лаборатории радиационного и комического материаловедения ТУСУРа завершаются работы по созданию интеллектуальных отражающих покрытий на основе соединений титаната бария, нанесённых детонационным методом.

1711

21/02/2017

​Биодеградируемые имплантаты Томского политехнического университета выходят на стадию клинических испытаний. Как сообщают ученые ТПУ, на стадии доклинических исследований эффективность томских изделий уже доказана, и сегодня некоторые биоразлагаемые имплантаты Томского политеха сегодня частично используются в медицинской практике в одном из ведущих ортопедических центров России — Центре Илизарова.

2778

12/07/2017

Ученые из НИИ кардиологии Томского национального исследовательского медицинского центра и Томского политехнического университета (ТПУ) планируют создать мобильного робота, который сможет оказывать первую медицинскую помощь пострадавшим в местах военных действий и ЧС.

1728

Титановый сплав более прочный, чем чистый титан.

Титановый сплав – это особое соединение на базе титана и соединения титана и бора, представляющее собой не обычный “сплав”, а особый композитный материал, похожий по своему устройству на соты пчел или мозаику. Такой сплав имеет малый удельный вес, высокую коррозионную стойкость, гипоаллергенность. В отличии от чистого титана титановый сплав обладает высокой прочностью и твердостью.

Описание:

Титановый сплав, точнее – композит «титан-титан бор», как и чистый титан, имеет малый удельный вес, высокую коррозионную стойкость, гипоаллергенность. В отличии от чистого титана титановый сплав обладает высокой прочностью и твердостью.

Главный недостаток титана – сравнительно низкая твердость, которая не позволяет использовать титан в качестве базы для режущих инструментов или других приборов и изделий, где необходимы материалы, хорошо сопротивляющиеся деформациям.

Титановый сплав – это особое соединение на базе титана и соединения титана и бора, представляющее собой не обычный “сплав”, а особый композитный материал, похожий по своему устройству на соты пчел или мозаику.

Компоненты этого материала выполняют разные функции. В частности, стенки “сот” данного композитного материала состоят из борида титана, более прочного и твердого материала, а пустоты между ними заполнены обычным титаном, более мягким и гибким, чем соединение бора и титана.

Такой очень прочный и при этом пластичный материал на базе сот можно получить, спекая смесь из порошков титана и диборида титана при температурах примерно в 1000 оС. В таких условиях матрицы из борида титана можно обрабатывать и деформировать без образования трещин в их структуре.

Преимущества:

– высокая коррозионная стойкость,

– малый удельный вес,

– гипоаллергенность,

– немагнитный материал,

– высокая прочность и твердость.

Применение:

– изготовление сверхпрочных и легких медицинских и аэрокосмических приборов, инструментов и изделий,

– изготовление режущих инструментов.

карта сайта

жаропрочные титановые сплавыизготовим титанового сплаванож из титанового сплавапрочность сварка состав особенности титановых сплавовтитан титановые сплавы вт госттитановые сплавы используются титановыхтитановые сплавы купить марки производство механические свойства технологиититановые сплавы характеристикититановый сплав вт6цена титановые сплавыяпонский нож из титанового сплава

Коэффициент востребованности 195

Презентация на тему: ” Нитинол, сплав никеля и титана (55% никеля, 45% титана в весовом исчислении), был создан и испытан в США в 1960- 61гг. Его появление, согласно появившемуся.” — Транскрипт:

2

Нитинол, сплав никеля и титана (55% никеля, 45% титана в весовом исчислении), был создан и испытан в США в гг. Его появление, согласно появившемуся в 1962 году сообщению авторов, было обусловлено «необходимостью получения материала, сочетающего высокую прочность с небольшим весом для использования в условиях высоких температур в ракетной и космической технике». В 1963 выяснилось, что легко деформируемые в охлажденном состоянии нитиноловые образцы при нагреве самопроизвольно восстанавливают свою первоначальную форму, совершая за термодинамический цикл полезную работу и обнаруживая в себе непревзойденным по силе проявления эффект памяти формы. Нитинол Эффекты памяти формы, обратимой памяти формы и сверхупругости в нитиноле обусловлены макроскопическим отражением микро- и наноструктурных трансформаций кристаллической решетки при полиморфном аустенитно-мартенситном фазовом превращении первого рода и потому эти свойства сохраняются навечно.

3

Широкое применение нитинол получил и в медицинской промышленности. Сегодня во всем мире стали хорошо известны бреккет-системы, применяемые для выравнивания измененного прикуса в стоматологии. Разработаны уникальные стенты для сосудистой хирургии, способные выдерживать от 10 до 20 миллионов циклов «сжатия- расширения» согласно утвержденному регламенту американской FDA и различные ортопедические приспособления, с дозированной корригирующей нагрузкой на область пораженной костной ткани.

4

Проблема экстренной регулировки клиренса автомобиля распространена в мире повсеместно, в случаях, когда необходимо преодолеть «трудные» участки дорожного пути в несколько километров (пригородное шоссе, размытое дождем, к примеру) и вернуть высоту дорожного просвета «на прежнее место». Варианты решения пневматических подъемников есть, но и жалоб на их эксплуатационную хрупкость так же предостаточно. В альтернативу пневматике, различные фирмы предлагают стойки амортизаторов с механическим способом подъема (резьба гайка), но тут появляется масса НО, включая одинаковый уровень подъема при неравномерной изнашиваемости амортизаторов спереди и сзади, необходимость обеспечить доступ к гайке, путем снятия колеса… и маникюр, наконец. Решение с пружиной из нитинола может быть доступно любому автомеханику- сварщику. Учитывая эпизодичность эксплуатации данного привода, конструкция прослужит столько, сколько прослужат и амортизаторы до их замены. Управление в данном случае происходит кнопкой из салона, а время срабатывания не более 1 мин.

5

Данный патент базируется на международном поиске, который не нашел аналогов применения технологии «двойной памяти никель- титановых сплавов» применительно к системам бытового освещения.

6

Техническая характеристика Развиваемое усилие, кгс Размеры силового органа, мм D 40×20, длина 150 Удлинение силового органа, мм Нагрев силового органа, °С Толщина разрезаемого металла, мм до 16 Масса устройства (без автономного источника питания), кг 0,56 Годовой экономический эффект от внедрения термомеханических ножниц для резки листового металла составил 17,2 тыс. руб.

Применение никеля в чистом виде

Для защиты металлов от коррозии

Для этого используются покрытия, которые наносятся гальванопластикой или плакированием. Первый способ применяют для алюминия, чугуна, магния и цинка, второй — для нелегированных сталей и железа.

Для производства металлических изделий, которые имеют постоянные формы и высокую коррозионную устойчивость

Никель в чистом виде стоит дороже, чем железо и сталь, поэтому используется в тех случаях, когда невозможно обойтись другим металлом с никелевым покрытием. Из никеля производят тигли и котлы, цистерны для перевозки и плавления щелочей, хранения реагентов, пищевых продуктов и др. В никелевых трубах изготавливают конденсаты. Инструменты их этого металла устойчивы при взаимодействии с агрессивными элементами, поэтому они практически незаменимы в химических лабораториях и медицинских центрах. Различные приборы из никеля применяются для телевидения, радиолокации и атомной техники.

В качестве катализаторов и фильтров в химической промышленности

Никель обладает такими же каталитическими свойствами, что и палладий, но стоит значительно меньше, поэтому широко используется в виде порошка в реакциях гидрирования спиртов, непредельных и ароматических углеводородов, циклических альдегидов.

Порошок чистого никеля также подходит для создания пористых фильтров, которые используются для фильтрования различных продуктов: топлива, газов и др.

Для механических прерывателей нейтронного пучка.

Свойства никеля позволяют получать нейтронные импульсы с большой энергией, в результате чего пластины из этого металла применяются в ядерной физике.

Также никель используют при изготовлении электродов в щелочных аккумуляторах.

Производство

Производство сплава — достаточно сложный процесс, состоящий из нескольких стадий:

  • Плавка
  • Переплавка
  • Литьё
  • Придание необходимой формы

Производство осложнено тем, что для получения высококачественного сплава, необходимо тщательно выверять количество первичных компонентов, а при плавлении титан легко взаимодействует с газами, из за чего плавка проходит с использованием вакуумно-индукционного метода и вакуумно-дуговой переплавки. Так же термообработка нитинола требует высокой точности, так как длительность и температура сильно влияют на температуры фазового превращения.

При вакуумно-индукционном методе исходный слиток готовят в графитовых печах . Это позволяет получить хорошо смешанный сплав, но при этом возникает некоторое количество соединения титана с углеродом. Вакуумно-дуговая переплавка необходима для уменьшения содержания примесей и включений, а так же обеспечения необходимой литой структуры. Далее следуют литьё для получения заготовок и придание необходимой формы заготовкам.

История

Открытие эффекта памяти формы восходит к 1932 году, когда шведский исследователь Арне Оландер первым заметил это свойство в золото-кадмиевых сплавах. Такой же эффект обнаружен в медно-цинковых сплавах в начале 1950-х. Советские металлурги Г. В. Курдюмов и Л. Г. Хандрос в 1948 году предсказали, а в 1949 году обнаружили сплав на основе алюминиевой бронзы, наделённый способностью после значительных пластических деформаций восстанавливать первоначальную форму при нагреве до определённой температуры. В 1980 году это изобретение было признано открытием и стало известно как эффект Курдюмова (Явление термоупругого равновесия при фазовых превращениях мартенситного типа – эффект Курдюмова. Открытие №239 от 8 марта 1948 г. в части теоретического предсказания явления и 17 марта 1949 г. в части его экспериментального обнаружения). В 1962 году Уильям Бюлер вместе с Фредериком Вангом обнаружили сильный эффект памяти формы у сплава на основе никеля и титана в ходе исследований в военно-морской лаборатории. Хотя и сразу было осознано потенциальное применение нитинола, реальные попытки коммерциализации сплава произошли спустя десять лет. Эта задержка возникла в значительной степени из-за чрезвычайной трудности плавления, переработки и обработки сплава.

Вызовы

Усталостные отказы нитиноловых устройств являются постоянным предметом обсуждения. Поскольку это предпочтительный материал для приложений, требующих огромной гибкости и подвижности (например, периферийных стентов, сердечных клапанов, интеллектуальных термомеханических приводов и электромеханических микроактюаторов), он обязательно подвергается гораздо большим усталостным напряжениям по сравнению с другими металлами. Несмотря на то, что усталостные характеристики нитинола с контролируемой деформацией превосходят все другие известные металлы, усталостные разрушения наблюдались в самых сложных областях применения. Сейчас прилагаются большие усилия, чтобы лучше понять и определить пределы стойкости нитинола.

Нитинол наполовину состоит из никеля, и поэтому в медицинской промышленности были большие опасения по поводу выделения никеля, известного аллергена и возможного канцерогена. (Никель также присутствует в значительных количествах в нержавеющей стали и кобальт-хромовых сплавах.) При правильной обработке (посредством электрополировки и / или пассивации ) нитинол образует очень стабильный защитный слой TiO 2, который действует как очень эффективный и самовосстанавливающийся барьер. против ионного обмена. Неоднократно было показано, что нитинол выделяет никель медленнее, чем, например, нержавеющая сталь. При этом очень ранние медицинские устройства изготавливались без электрополировки, и наблюдалась коррозия. Современные саморасширяющиеся металлические стенты из нитинола , например, не показывают признаков коррозии или выделения никеля, а результаты у пациентов с аллергией на никель и без нее неотличимы.

В отношении включений в нитинол, как TiC, так и Ti 2 NiO x, ведутся постоянные и продолжительные дискуссии . Как и во всех других металлах и сплавах, в нитиноле можно найти включения. Размер, распределение и тип включений можно до некоторой степени контролировать. Теоретически, меньшие размеры, округлость и меньшее количество включений должны привести к повышению усталостной прочности. В литературе некоторые ранние работы сообщают, что не смогли показать измеримых различий, в то время как новые исследования демонстрируют зависимость сопротивления усталости от типичного размера включений в сплаве.

Нитинол трудно сваривать как с самим собой, так и с другими материалами. Лазерная сварка нитинола сама по себе – относительно рутинный процесс. Совсем недавно прочные соединения между проволоками из никелевого титана и проволок из нержавеющей стали были выполнены с использованием никелевого наполнителя. Сварные швы с использованием лазера и вольфрама в среде инертного газа (TIG) выполнялись между трубками из никель-титанового сплава и трубами из нержавеющей стали. Продолжаются дополнительные исследования других процессов и других металлов, с которыми можно сваривать нитинол.

Частота срабатывания нитинола зависит от управления теплом, особенно во время фазы охлаждения. Для повышения эффективности охлаждения используются многочисленные методы, такие как принудительное воздушное охлаждение, текущие жидкости, термоэлектрические модули (например, тепловые насосы Пельтье или полупроводники), радиаторы, проводящие материалы и более высокое отношение поверхности к объему (улучшение до 3,3 Гц с очень тонкие провода и до 100 Гц с тонкопленочным нитинолом). Самое быстрое зарегистрированное срабатывание нитинола происходило за счет разряда высоковольтного конденсатора, который нагревал провод SMA за микросекунды и приводил к полному фазовому преобразованию (и высоким скоростям) за несколько миллисекунд.

Последние достижения показали, что переработка нитинола может расширить термомеханические возможности, позволяя встроить несколько запоминающих устройств формы в монолитную структуру. Исследования в области технологии мульти-памяти продолжаются и обещают предоставить в ближайшем будущем устройства с улучшенной памятью формы, а также применение новых материалов и структур материалов, таких как гибридные материалы с памятью формы (SMM) и композиты с памятью формы (SMC).

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: