Как настроить редуктор углекислотный для полуавтомата для сварки

Режим и техника сварки

На что необходимо обратить внимание, проводя полуавтоматическую сварку в среде углекислого газа

Сварка металлов проводится на постоянном токе при обратной полярности. Это когда минус подключается к заготовке, а плюс к электроду

В данном случае с полуавтоматами к присадочной проволоке.
Силу тока регулируют в зависимости от толщины свариваемых металлов, от скорости подачи присадочной проволоки в зону сваривания и от напряжения электрической дуги.
Напряжение дуги является очень важной составляющей сварочного процесса. От его значения зависят размеры сварного шва

К примеру, если напряжение большое, то ширина шва в процессе сварки также становится большой.
Вылет проволоки тоже играет немаловажную роль. Если вылет небольшой, то сварщик плохо видит и сам процесс соединения, и зону сварки. При большом вылете проволоки сварочная дуга дестабилизируется.

Поэтому качество сварки зависит от вылета проволоки из горелки, а также от скорости перемещения последней. Если скорость будет большая, то сварка произойдет прерывистыми участками. Если малая, то расплавленный металл заполнит не только зазор между заготовками, но и вытечет за его пределы, что приведет к последующей доработке стыка. К тому же при небольшой скорости появляется вероятность получения прожогов.

Что касается техники при сварке полуавтоматом, то она достаточно проста и не требует каких-то особых манипуляций с горелкой. В первую очередь перед началом сварочных работ необходимо убедиться, что углекислый газ подается из баллона на горелку. Для этого нужно всего лишь открыть вентиль на редукторе баллона и подставить ладонь под горелку. Небольшой ветерок говорит о том, что система подачи работает нормально.

Кстати, давление углекислоты в баллоне должно составлять 60-70 кгс/см², что контролируется манометром на редукторе, а вот давление самого газа в горелке показывает второй манометр на редукторе баллона. Его значение должно быть 2,0 кгс/см². Этот показатель не является абсолютным, потому что сам сварочный процесс может проходить при разных условиях. К примеру, сквозняки в цеху, на открытой площадке. При таких условиях давление на горелке необходимо поднять, что увеличит расход углекислоты.

Все готово, можно приступать к сварке. Для этого проволоку необходимо выпустить из горелки немного больше, чтобы легко ею можно было бы дотронуться до свариваемого металла для возбуждения дуги. Конец проволоки устанавливается на поверхность металлической заготовки, после чего сварщик нажимает на кнопку пуск на рукоятке горелки. Происходит поджиг дуги, после чего проволока убирается до необходимого размера. Открывается вентиль на редукторе баллона с углекислым газом, производится подача углекислоты в зону сварки.

В процессе углекислотной сварки горелку можно перемещать в любом направлении

Здесь важно, чтобы для сварщика данное направление было удобным. То есть, он смог бы отслеживать и контролировать сварочную операцию

При этом горелка должна располагаться под углом 60-70° по отношению к свариваемой поверхности заготовок.

Специалисты же отмечают различия направления сварки и угла наклона проволоки. К примеру, если варить слева направо, то горелку лучше держать углом назад. Если справа налево, то углом вперед. В первом случае глубина сваривания резко увеличивается, а вот ширина сварного шва заметно уменьшается. Во втором случае, наоборот, глубина проварки уменьшается, а ширина шва увеличивается. Последний вариант лучше всего подходит к сварке тонкостенных металлических деталей.

Применение смесей

Бескислородные смеси выбирают при скоростной проходке и сварке цветных металлов. Они дают великолепные чистые швы с гладким профилем, окисление поверхности незначительное, обеспечивают низкий уровень армирования и обеспечивает высокую скорость проходки. Придают стабильность электрической дуге при соединении материалов толще 9 мм, снижают вероятность появления дефектов шва.

При подаче газовой смеси полуавтоматом снижается скорость подачи проволоки, быстрее нагревается горелка. Приходится корректировать режим работы, подбирать массивные головки. Для качественной работы со смесями необходимы профессиональные навыки.

При выборе готовых сварочных газовых смесей с кислородом учитывают особенности составов. К-2 считается идеальным для черных и низколегированных сталей. Другие разрабатывались для металла различной толщины, глубокого провара и сварки тонкостенного листа, профиля без деформации. Кислородосодержащие составы применяются для коротких и длинных швов, реставрационной наплавки изношенных деталей. Могут использоваться повсеместно: для роботов-автоматов, ручной, полуавтоматической сварки во всех пространственных положениях. Выбирают специальные составы для профилированного проката из сортовых сталей, для наплавки.

Для работы со сварочными смесями нужны профессиональные навыки

При ручной сварке важно соблюдать расстояние от заготовок до сопла. Необходимо постоянно поддерживать расстояние в пределах 15–20 мм от стыка, чтобы не допустить непроваров

Горелка размещается под прямым углом. Следует учитывать, что кислородные смеси увеличивают текучесть расплавленного металла, при работе в потолочном и вертикальном положении возможны проблемы.

Распространенные заблуждения при выборе редуктора для сварочных работ (аргон, углекислота)

Генри Форд в свое время говорил: «Нет плохих автомобилей, есть люди, которые неправильно сделали свой выбор». Поговорим сегодня о том, как выбрать редуктор для полуавтоматической или автоматической сварки в среде защитных газов и сделать этот выбор правильно.

Заблуждение №1

Состоит в том, что многие сварщики выбирают редуктор УР-6-6. Чем он плох? Изначально он разрабатывался для пищевой промышленности еще в советское время, т.е. он использовался для газирования воды, всевозможных напитков, при консервации колбас, мяса, креветок и других продуктов. Сегодня же существует целая линейка редукторов, которые предназначены непосредственно для сварки в среде защитных газов, например:

  • Универсальный АР-40/У-30
  • На аргон АР-40-2
  • На углекислоту У-30

Или их аналоги.

Основной особенностью этих редукторов, в отличие от УР-6-6, является наличие на манометре низкого давления градуировки в л/мин для каждого рода газа. Это очень удобно для работы, вам уже не нужно будет, как на УР-6 настраивать расход на глаз, приблизительно или смотреть по таблицам.

Заблуждение №2

Когда выбирают для регулярного использования при сварке в среде защитных газов малогабаритный редуктор, который не предназначен для ежедневного использования и стопроцентной загрузки. «Малогабаритки», если их использовать в промышленности, будут недолговечны. При постоянной работе используйте редукторы большого габарита с более качественным редуцирующим узлом, который способен выдержать длительные механические и температурные нагрузки, более точно поддерживать заданное давление и расход, соответственно, потери газа в таком редукторе будут меньшими.

Заблуждение №3

Многие сварщики думают, что редукторы с ротаметром являются более экономичными, чем с манометрическим указанием расхода. На самом деле это не так. Расход одинаковый. Отличие состоит только в том, что расход ротаметром измеряется и показывается в реальном времени, а редуктор с манометром показывает расход косвенно, т.е. в соответствии с расходной шайбой и рассчитанной шкалой в л/мин, нанесенной на манометр низкого давления.

Заблуждение №4

Некоторые сварщики думают, что редукторы с двумя ротаметрами предназначены для подключения двух сварочных постов. На самом деле они используются для сварки химически активных материалов, таких как титан, ведь при сварке титана защиту сварного шва нужно обеспечить с двух сторон. Пригодится такая защита и при сварке ответственных узлов из нержавейки. К первому ротаметру подключается горелка, через которую подается газ для защиты сварочной ванны, ко второму – рукав по которому газ поступает к обратной стороне шва.

Заблуждение №5

Применение (с целью экономия средств) вместо специализированного редуктора, допустим, редуктора кислородного или пищевого назначения. Этого делать нельзя, так как последние устройства не предназначены для сварки в среде защитных газов. Особенно при работе в среде углекислого газа они будут постоянно замерзать и выходить из строя, что грозит потерей углекислоты или аргона, которые достаточно дорогостоящие. Поэтому вместо экономии вы потеряете.

Заблуждение №6

Не использовать подогреватели при работе с углекислотой. Диоксид углерода имеет высокий коэффициент расширения, поэтому в процессе его испарения из баллона и редуцирования температура на редуцирующем клапане может понижаться до – 60 градусов. Влага, которой достаточно много в этом газе, кристаллизуется, что может привести к выходу из строя редуктора, что в свою очередь повлечет или прекращение подачи газа, или его самотек. Все это отразится на качестве сварных швов.

Применяйте при работе с углекислотой подогреватели. Они бывают:

  • Проточного типа
  • Встроенные на входной штуцер
  • Встроенные (этот тип мы не рекомендуем покупать)

Заблуждение №7

Купив редуктор с ротаметром, некоторые сварщики пытаются снять корпус и регулировать задающий винт или клапан. Этого делать не нужно. Все уже настроено производителем. Ваша задача установить регулирующее устройство на баллон и подключить к сварочному аппарату.

Принцип работы газовых редукторов

Принцип действия редуктора определяется его характеристикой. У редукторов прямого действия — падающая характеристика, то есть рабочее давление по мере расхода газа из баллона несколько снижается, у редукторов обратного действия — возрастающая характеристика, то есть с уменьшением давления газа в баллоне рабочее давление повышается.

Редукторы различаются по конструкции, принцип действия и основные детали одинаковы для каждого редуктора.

Редуктор обратного действия (рис. 1 а) работает следующим образом. Сжатый газ из баллона поступает в камеру высокого давления 8 и препятствует открыванию клапана 9. Для подачи газа в горелку или резак необходимо вращать по часовой стрелке регулирующий винт 2, который ввертывается в крышку 1. Винт сжимает нажимную пружину 3, которая в свою очередь выгибает гибкую резиновую мембрану 4 вверх. При этом передаточный диск со штоком сжимает обратную пружину 7, поднимая клапан 9, который открывает отверстие для прохода газа в камеру низкого давления 13. Открыванию клапана препятствует не только давление газа в камере высокого давления, но и пружина 7, имеющая меньшую силу, чем пружина 3. Автоматическое поддержание рабочего давления на заданном уровне происходит следующим образом. Если отбор газа в горелку или резак уменьшится, то давление в камере низкого давления повысится, нажимная пружина З сожмётся и мембрана 4 выправится, а передаточный диск со штоком 5 опустится и редуцирующий клапан 9 под действием пружины 7 прикроет седло клапана 10, уменьшив подачу газа в камеру низкого давления. При увеличении отбора газа процесс будет автоматически повторяться. Давление в камере высокого давления 8 измеряется манометром 6, а в камере низкого давления 13 — манометром 11. Если давление в рабочей камере повысится сверх нормы, то при помощи предохранительного клапана 12 произойдет сброс газа в атмосферу.

Помимо однокамерных редукторов применяют двухкамерные, в которых давление газа понижается постепенно в двух камерах редуцирования, расположенных последовательно одна за другой. Двухкамерные (двухступенчатые) редукторы обеспечивают более постоянное рабочее давление и менее склонны к замерзанию, однако они сложнее по конструкции, поэтому двухкамерные (двухступенчатые) редукторы используют тогда, когда необходимо поддерживать рабочее давление с повышенной точностью.

Редукторы прямого действия. В редукторах прямого действия (рис. 1, б) газ через штуцер 3, попадая в камеру высокого давления 6 и действуя на клапан 7, стремится открыть его (а в редукторах обратного действия — закрыть его). Редуцирующий клапан 7 прижимается к седлу запорной пружиной 5 и преграждает доступ газа высокого давления. Мембрана 1 стремится отвести редуцирующий клапан 7 от седла и открыть доступ газа высокого давления в камеру низкого (рабочего) давления 10. В свою очередь мембрана 1 находится под действием двух взаимно противоположных сил. С наружной стороны на мембрану 1 через нажимной винт 12 действует нажимная пружина 11, которая стремится открыть редуцирующий клапан 7, а с внутренней стороны камеры редуктора на мембрану давит редуцированный газ низкого давления, противодействующий нажимной пружине 11. При уменьшении давления в рабочей камере нажимная пружина 11 распрямляется, и клапан уходит от седла, при этом происходит увеличение притока газа в редуктор. При возрастании давления в рабочей камере 10 нажимная пружина 11 сжимается, клапан подходит ближе к седлу и поступление газа в редуктор уменьшается. Рабочее давление определяется натяжением нажимной пружины 11, которое изменяется регулировочным винтом 12. При вывертывании регулировочного винта 12 и ослаблении нажимной пружины 11 снижается рабочее давление и, наоборот, при ввертывании регулировочного винта сжимается нажимная пружина 11 и происходит повышение рабочего давления газа. Для контроля за давлением на камере высокого давления установлен манометр 4, а на рабочей камере — манометр 9 и предохранительный клапан 8.

В практике наибольшее распространение получили редукторы обратного действия как более удобные и безопасные в эксплуатации.

Какой газ нужен для сварки полуавтоматом

При выборе газа для полуавтоматической сварки необходимо ознакомиться со свойствами каждого вида. Для полуавтомата применяются следующие субстанции:

  • Аргон. Используют при соединении активных металлов и их сплавов, так как он является инертным. Обеспечивает защиту шва от появления микротрещин и дефектов.
  • Гелий. С его помощью получают соединения большого размера. Является инертным, защищает соединение от окисления.
  • Углекислотная смесь. Применяется для сварки полуавтоматом с короткой дугой.

Критерии выбора

Применение газа для полуавтомата зависит от факторов:

  • значение критических температур которая может быть обеспечена при горении смеси защитного вещества;
  • количество тепла, образуемое в месте соединения при сварке металлических заготовок;
  • способность обеспечивать защиту сварочного шва при соединении определенных металлов и их сплавов.

Преимущества

Любые виды защитных веществ сохраняют ряд преимуществ:

  • варить полуавтоматом без применения дорогого оборудования;
  • соединения производят в труднодоступных местах там, где нельзя применить электродуговую сварку;
  • в процессе можно регулировать номинальную мощность пламени из горелки, производят стыковку металлов с различными техническими характеристиками, например, титана с медью;
  • помимо сварки можно выполнять закалку металлических конструкций, а также их резку;
  • повышается качество шва в результате защиты от окисления;
  • снижаются затраты на производство соединения, ускоряется процесс;
  • увеличивается эффективность технологии;
  • плавление металлических деталей в зоне действия дуги происходит быстрее, снижается время на сварку;
  • исключается разбрызгивание расплавленного металла в месте стыковки;
  • увеличивается свойства пластичности соединения, а также его плотность, исключается разрушение шва при эксплуатации;
  • обеспечивается стабильность электрической дуги;
  • снижается уровень задымления, тем самым понижается вред от сварки.

Как работает редуктор для баллона:

1 Прямой редуктор

Обычный простой редукционный аппарат для газа, состоит из двух камер c областью повышенного и низкого давления разделенных между собой резиновой мембраной. Кроме того, “редукционник” оборудован входным и выходным штуцером. Современные приборы сконструированы так, что сильфонная подводка вкручивается прямо в редуктор. Все чаще можно встретить газовый редуктор с третьим штуцером, предназначенным для монтажа мономера.

После подачи газа по шлангу и далее через штуцер он поступает внутрь камеры. Создаваемое газовое давление стремится открыть клапан. С обратной стороны на клапан давит запорная пружина, возвращая его назад на специальное посадочное место, называемое в простонародье “седло”. Возвращаясь на свое место, клапан препятствует бесконтрольному поступлению газа высокого давления из баллона.

Мембрана

Вторая действующая сила внутри редуктора является резиновая мембрана, разделяющая устройство на область высокого и низкого давления. Мембрана выступает “помощником” высокому давлению и в свою очередь стремится приподнять клапан из седла, открывая проход. Таким образом, мембрана находится между двух противоборствующих сил. Одну поверхность поддавливает нажимная пружинка (не путайте с возвратной пружиной клапана), которая хочет открыть клапан, с другой стороны, на нее давит уже прошедший газ в зону низкого давления.

Нажимная пружина имеет ручную регулировку силы нажатия на клапан. Советуем газовый редуктор купить с посадочным местом под манометр, таким образом вам будет легче осуществлять регулировку нажатия пружины до нужных значений давления на выходе.

По мере выхода газа из редуктора к источнику потребления, давление в камере рабочего пространства понижается, давая возможность распрямиться нажимной пружинке. Она то и начинает выталкивать клапан из седла, снова позволяя наполнить прибор газом. Соответственно давление ползет вверх, надавливая на мембрану уменьшая размер нажимной пружинки. Клапан перемещается назад в седло суживая щель, уменьшая наполнение газом редуктор. Далее процесс повторяется до тех пор, пока давление не выравнивается до установленного значения.

Следует признать, что редукторы для газовых баллонов прямого типа ввиду сложной конструкции, не пользуются повышенным спросом, гораздо более широкое распространение нашли редукторы обратного типа, к слову сказать они считаются приборами с высокой степенью безопасности. 

2 Обратный редуктор

Функционирование прибора, заключается в противоположном действии описанном выше. Сжиженное голубое топливо подается в камеру где создается высокое давление. Баллонный газ накапливается и мешает клапану открыться. Чтобы обеспечить поступление газа в бытовой прибор, требуется повернуть регулятор по направлению правой резьбы.

С обратной стороны ручки регулятора находится длинный винт, который накручиваясь надавливает на нажимную пружинку. Сжимаясь она начинает изгибать эластичную мембрану в верхнее положение. Таким образом, передаточный диск посредством штока, оказывает давление на обратную пружинку. Клапан приходит в движение, начинает приоткрываться, увеличивая зазор. Голубое топливо устремляется в щель и заполняет рабочую камеру с низким давлением.

В рабочей камере, в газовом шланге и в баллоне давление начинает возрастать. Под действием давления осуществляется распрямление мембраны, содействует ей в этом постоянно сжимающаяся пружинка. В результате, механических взаимодействий передаточный диск опускается ослабляя обратную пружину, которая стремится вернуть клапан на свое посадочное место. Закрывая зазор, естественно поступление газа из баллона в рабочую камеру ограничивается. Далее с понижением давления в сильфоновой подводке запускается обратный процесс.

Одним словом, в результате сдержек и противовесов, качели удается уравновесить и газовый редуктор поддерживает в автоматическом режиме сбалансированное давление, без резких скачков и перепадов.

Разновидности

Рассмотрим виды газов, которые применяются при сварке полуавтоматом

Ацетилен это бесцветный газ, который легче воздуха. Он обладает особенным запахом. Один из широко распространенных газов, которые применяются в данной сфере, так как обладает самой высокой температурой горения и имеет повышенную полярность. Часто используется из-за высоких температурных показателей при резке металлических конструкций.


Водород — также бесцветный, не пахнущий газ, который относится к классу взрывоопасных веществ. При контакте с кислородом воздушная среда образует гремучую смесь. По технике безопасности водородные баллоны не должны находиться под давлением больше 15 мПА.

Коксовый газ не имеет цвета, но имеет специфический запах. Это отход, извлекаемый в процессе добычи кокса, который используется при сварке. Он выводится из каменного угля. Газ можно транспортировать при помощи трубопроводных магистралей.

Природные газы, такие как метан, бутан и пропан не имеют особых требований к хранению и транспортировке. Добыча газа чаще всего происходит прямо на месте зарождения.

Пиролизный газ добывается в процессе распада нефтепродуктов. Он способствует образованию коррозии горелки, из-за этого они быстро выходят из строя. Перед самим использованием пиролизный газ очищают. Использует такую субстанцию не только при сварке но и при резке металлов.

Непосредственно для сварки в стандартных условиях, то есть при подключении к сети 220 В, используется два вида газов — это Углерод и Аргон. Они оба подходят для сварки полуавтоматом. Иногда можно встретить комбинацию этих газов или особые газовые смеси которые отличаются по свойствам от их оригиналов.

Редукторы

Само понятие «редуцирование» означает изменение какого-либо физического показателя в меньшую или большую сторону. В случае с редуктором этим физическим показателем является давление газа.

Редуктор – это механическое устройство для стабилизации давления газа. Сжатый газ в баллоне находится под очень высоким давлением. Редуктор обеспечивает понижение давления на выходе до необходимых показателей (зависит от вида газовой смеси). И поддерживает давление на постоянном уровне.

Если вы планируете работать с газосварочным оборудованием, рекомендуем купить редуктор. Редукторы улучшают качество сварного шва, стабилизируют сварочный процесс и оптимизируют расход газа при сварочных работах.

Устройство

Основными рабочими элементами редуктора являются редуцирующий клапан, мембрана и запорная пружина. Пружина пытается перекрыть клапан редуктора с одной стороны. С другой стороны воздействует мембрана, стремясь его открыть. Одновременно осуществляется противодействие редуцированного газа с пониженным давлением. Когда рабочее давление снижается ниже нормы, сила воздействия мембраны превышает силу воздействия пружины, и клапан открывается. Для регулировки и контроля уровня давления редукторы оснащаются вентилями и манометрами.

Виды

Основная классификация газовых редукторов — по виду редуцируемого газа. В зависимости от рабочего газа редукторы делятся на кислородные, углекислотные, ацетиленовые, метановые, пропан-бутановые. Выбирать необходимо исходя из того, какими технологиями сварки вы пользуетесь – аргонодуговой, газовой, углекислотной.

Цветовая маркировка редуктора соответствует цвету газового баллона, для которого он предназначен. Экспериментировать с использованием неподходящих по газу редукторов настоятельно не рекомендуется. Редукторы для некоторых газов категорически запрещается применять для работы с другими газами.

Редукторы для горючих газов имеют левую резьбу, для негорючих – правую.

Пропускная способность

Пропускная способность определяет производительность газового редуктора. По пропускной способности редукторы делятся на два класса: постовые и рамповые. Постовые редукторы малой пропускной способности способны подавать до 5 м3/ч газа при давлении 3 атм или до 25 м3/ч при давлении 10 атм. Такие редукторы используют для обслуживания одного сварочного поста.

Рамповые редукторы отличаются высокой пропускной способностью до 100 м3/ч, могут обслуживать сварочные комплексы из нескольких постов, сверхмощные посты для резки и другое профессиональное специализированное оборудование. За счет того, что у рамповых редукторов сечения большего размера, они больше по весу и габаритам.

Сложность орбитальной сварки и готовое решение для упрощения технологии

Орбитальная сварка используется для соединения труб и цилиндрических емкостей. Для них необходим высококачественный двусторонний провар, но полноценный доступ к изнаночной стороне шва затруднено.

В этом случае при малом диаметре заготовок их вращают перед сварочной горелкой, при большом диаметре или невозможности вращения на заготовки надевают специальную оснастку, по которой, как планета по орбите, движется сварочный автомат. При этой технологии часто используют подогрев заготовок.

Орбитальная сварка, как правило, проводится в чисто аргонной среде. Если же к соединению по техническим условиям предъявляются особые требования, как-то:

  • скорость сварки;
  • глубина проплава;
  • конфигурация изнаночной стороны шва.

В аргон добавляют гелий или водород. Для особо сложных случаев сварки создают смеси из нескольких компонентов, каждый из которых дает свой эффект.

#4

Отправлено 21 Март 2011 16:51

Мужики, в теме про нержавейку нет нифига. В таблицах по баллонам я разобрался. Спасибо.

Скажите толком например какой редуктор можно поставить на смесевой баллон? Марка, название?

Описание смесей и их свойств

Для проведения сварочных работ используют смеси 2 или 3 газов, которые получаются с помощью смесителя с регулировкой подачи или поставляются в готовом виде в баллоне. Применение защитной атмосферы позволяет перейти от капельного переноса металла в ванну расплава к струйному без риска разбрызгивания потока. В результате увеличивается скорость проведения работ без снижения качества стыка.

Рекомендуем к прочтению Описание метода радиографической дефектоскопии

Распространенные виды смесей для применения в полуавтоматах MIG-MAG:

  • 98%Ar+2%CO2 – используют для сварки нержавеющих сталей, оцинкованных заготовок или соединения деталей из меди с железными элементами;
  • 92%Ar+8%CO2 – применяют при ускоренной сварке листов стали толщиной от 1 до 5 м;
  • 80%Ar+20%CO2 – необходима при наплавке конструкционных или сварке нержавеющих сталей с использованием проволоки из порошкового композита;
  • 75%Ar+25%CO2 – используют при сварке конструкций с увеличенным количеством вертикальных стыков;
  • 82%Ar+18% углекислоты – применяют при наплавке высокопрочных сталей.

Аргон с кислородом

В состав материала входят от 1 до 5% кислорода, который позволяет повысить текучесть расплава в ванне и обеспечивает подачу жидкого металла электрода или присадочной проволоки мелкими каплями. Смесь применяют при изготовлении конструкций из углеродистых или легированных сталей.

Аргон с кислородом позволяет повысить текучесть расплава.

Кислород и CO2

Смесь ухудшает адгезию капель расплава, попавших на поверхности заготовок, и улучшает внешний вид сварного шва. Допускается соединение деталей с кромками, покрытыми ржавчиной. Защитный газ снижает риск образования пор в металле стыка. Введение кислорода позволяет увеличить температуру в зоне сварки и повысить производительность. Но следует учитывать окисление металла: попадающие в стык примеси ухудшают механические характеристики. При сварке в воздух выделяется дым от сгоревшего металла, негативно влияющий на дыхательные органы.

Водород и аргон

Смесь позволяет улучшить условия наплавки металла на поверхности, используется как защитная атмосфера при сварке нержавеющих сталей и сплавов на основе никеля. Концентрация водорода в среде не превышает 3%, что предотвращает воспламенение газа. В составе смеси допускается небольшое содержание азота и кислорода. Плотность материала при нормальных условиях составляет 1,615 кг/м³. Смесь не оказывает негативного влияния на окружающую среду, по химическим характеристикам близка к инертным газам.

Водород и аргон улучшают условия наплавки металла.

Аргон с гелием

Это универсальная смесь, рассчитанная на сварку конструкционных сталей или цветных металлов и их сплавов (например соединений на базе меди, отличающихся повышенной теплопроводностью). Газ для сварки повышает мощность дугового разряда при неизменной силе тока и напряжении, может использоваться при соединении элементов из хромо-никелевых сталей и алюминиевых сплавов.

Кислородные редукторы

Кислородный редуктор предназначен для понижения и регулирования давления газа — кислорода, поступающего из баллона, рампы или сети, и автоматического поддержания постоянным заданного рабочего давления газа.

Кислородные редукторы, применяемые при газовой сварке и резке металлов, окрашивают в голубой цвет и крепят к вентилям баллонов накидными гайками.

Кислородный редуктор присоединяется к баллону накидной гайкой. Газ, пройдя фильтр, попадает в камеру высокого давления. При вращении регулировочного винта по часовой стрелке усилие нажимной пружины передается через нажимной диск, мембрану и толкатель на редуцирующий клапан, который, перемещаясь, открывает проход газу через образовавшийся зазор между клапаном и седлом в рабочую камеру.

Редуцирующий узел, состоящий из седла, клапана, пружины и фильтра ЭФ-5, выполнен в виде самостоятельного узла. На корпусе редуктора рабочей камеры установлен предохранительный клапан, отрегулированный на выпуск газа при давлении в рабочей камере в интервале 16,5—25,0 кгс/см².

Давление в баллоне контролируется манометром высокого (входного) давления, а в рабочей камере — манометром низкого (выходного) давления. Отбор газа осуществляется через ниппель, который присоединяется к редуктору гайкой с резьбой М16×1,5. К ниппелю присоединяется рукав диаметром 9 или 6 мм, идущий к горелке или резаку.

Технические характеристики некоторых кислородных редукторов

Показатели БКО 50 12,5 мини БКО 50 4
БКО — 50 МГ

СКО — 10-2

РК — 70

РКЗ — 500-2
Наибольшая пропускная способность V, м3/ч 50 50 50 10 100 500
Наибольшее давление газа на входе, P1, MPa (кгс/см2) 20 (200) 20 (200) 20 (200) 1,6 (16) 20 (200) 20 (200)
Наибольшее рабочее давление, P2, MPa (кгс/см2) 1,25 (12,5) 1,25 (12,5) 1,25 (12,5) 0,5 (5) 7 (70) 1,6 (16)
Масса, кг, не более 0,85 1,5 1,2 1,5 12,2 10

На редуктор наносится следующая маркировка:

  • Товарный знак предприятия изготовителя.
  • Марка редуктора.
  • Год и месяц выпуска.

Требования к материалам кислородного редуктора

Все детали, контактирующие с кислородом, должны быть обезжирены. Пружины и другие движущиеся детали, находящиеся в контакте с кислородом, должны быть выполнены из стойких к окислению материалов. На пружины кислородных редукторов допускается наносить защитные покрытия, стойкие среде кислорода.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: