Твердые сплавы: их свойства и характеристики

Основные сферы применения твердых сплавов различных марок

Твердые сплавы различных марок находят применение в следующих сферах.

  1. Изготовление инструментов для металлообработки. Твердые сплавы используют при производстве фрез, сверл, коронок, резцов, дисков, зенкеров и зенковок, протяжек, разверток, метчиков, плашек и пр. (Вот здесь можно добавить много ссылок на соответствующие разделы каталога)

    Фотография №2: твердосплавные фрезы по металлу.

  2. Производство отдельных деталей измерительного инструмента. Твердые сплавы идут на изготовление компонентов для оборудования, испытывающего при эксплуатации высокие нагрузки. Высокоточные поверхности также делают твердосплавными.
  3. Производство простых и сложных форм и матриц. Они идут на отливку различных деталей и заготовок.
  4. Получение ключевых деталей небольших размеров. К ним относятся подшипники, клеммы, ролики, шарики, обоймы и пр.
  5. Производство оборудования, предназначенного для работы при больших нагрузках. Из твердых сплавов изготавливают буровые установки рудодобывающее оборудование и т. д.
  6. Изготовление отдельных деталей для техники. Отличный пример — ножи для лезвий грейдеров.

Классификация

Существует специальная международная классификация, именуемая «ИСО». Она разделяет отечественные и зарубежные твердые сплавы по области применения. Маркируется буквами из латинского алфавита:

  1. К — используется для чугуна.
  2. N — обработка цветных металлов и сплавов аналогичным им.
  3. H — применяется при работе с закаленной сталью.
  4. M — для нержавеющей стали.
  5. P — для отливок со сливной стружкой.
  6. S — для работы с жаропрочными сплавами.

Помимо этой классификации, есть разделение по химическим элементам, содержащимся в составе, и количеству основных металлов.

Вольфрамосодержащие

Эти соединения используются при изготовлении режущего инструмента. Они могут маркироваться как ВК или ВКМ. Цифры будут обозначать процентное содержание тех или иных элементов.

Титановольфрамосодержащие

Из этих соединений изготавливают оснастку для обработки стали на высоких скоростях. Марка этих сплавов — ТК. Цифры указывают на содержание кобальта и титана.

Классификация

  1. По составу
  • Вольфрамокобальтовые (ВК) – марки ВК3М, ВК3, ВК8, ВК6М и др. Внутри группы марки отличаются разным процентом кобальта, типом производства, величиной зерна карбида вольфрама (мелкозернистая и крупнозернистая структура). Для режущих инструментов подходят марки с процентным содержанием кобальта до 12%. При повышении процента кобальта устойчивость состава при резании понижается, но увеличивается его эксплуатационная прочность. Инструменты, изготовленные из сталей данной группы, используются для работы с чугунными, конструкционными сталями, хрупкими материалами при ударной обработке, прерывистом технологическом цикле, в процессе которого температура в зоне резки не поднимается до значительных уровней.
  • Титановольфрамокобальтовые (ТК) – марки Т14К8, Т5К10 и др. В химический состав этого типа твердых сплавов входят следующие компоненты: карбид титана, вольфрама и кобальт в виде связующего звена. Если сравнивать данные сплавы с марками ВК, можно отметить у них высокие показатели твердости и жаропрочности, устойчивости к окислению, но они менее упруги, электро- и теплопроводность материалов ниже. Предназначаются для работы с металлами, которые эксплуатируются при более интенсивных скоростях резки.
  • Титанотанталовольфрамокобальтовые (ТТК) – ТТ8К6, ТТ7К12, ТТ10К8Б и др. Добавление в структуру тантала значительно улучшает эксплуатационные возможности получаемых сплавов, повышая их устойчивость к высоким температурным воздействиям и увеличивая прочность. Они используются для резки тяжело обрабатываемых материалов, когда инструмент в процессе работы подвергается серьезной нагрузке.
  • Безвольфрамовые (БВТС) – КНТ16, ТН20 и др. Изготавливаются без использования вольфрама и кобальта, на базе титановых соединений, с добавлением никеля и молибдена в качестве связующих элементов. По твердости данные составы аналогичны маркам вольфрамовой группы, они почти не окисляются, а по упругости и прочности им уступают. Подходят для оборудования, которое работает при прерывистом резании.
  • По технологии получения
  • Литые стали – изготавливаются по классической технологии литья, с последующей механической и термической обработкой.
  • Спекаемые составы (однокарбидные, двухкарбидные, трехкарбидные) – производятся методами порошковой металлургии, с дальнейшей шлифовкой, лазерной, ультразвуковой, химической обработкой.

По области применения

  • Инструментальные – используются для резания, штамповки, давления, бурения обрабатываемых материалов.
  • Конструкционные – применяются для производства деталей, к которым предъявляются высокие требования износоустойчивости, сопротивления большим нагрузкам.
  • Жаростойкие и жаропрочные – подходят для инструментария, подвергающегося в процессе эксплуатации температурным воздействиям.

По группе резки материалов

  • Группа P – для материалов, образующих сливную стружку.
  • Группа K – для резки чугуна, цветных металлов, твердых материалов, образующих элементную и стружку надлома.
  • Группа M – для обработки нержавейки, жаропрочных и титановых материалов, образующих сливную и стружку надлома.

Область применения

Твердый сплав ВК8 используется в различных областях деятельности, которые включают медицинское направление и ювелирное дело. Инструменты, изготовленные из данного материала, характеризуются устойчивостью к износу и практически не истираются при резке металла. Сохранение эксплуатационных характеристик возможно при температуре нагрева до 1100 градусов, при этом применяется обработка:

  • механическим способом;
  • бесстружковым;
  • газотермическим напылителем.

Применение сплава ВК8 предусмотрено для изготовления инструментов:

  • быстроизнашиваемых деталей;
  • валов для проката, пунсонов, штамповочных форм, калибровочного оснащения;
  • токарного, сверлильного, фрезерного, зенкерного инструмента;
  • изделий для проведения чистовых и черновых работ с титановыми сплавами, сталью с высокими антикоррозионными свойствами, устойчивостью к действию температуры, чугуном, латунью, бронзой.

Резец

Для повышения скорости проведения работ и уменьшения изнашиваемости при выборе инструмента учитывается зернистость металла. Крупнозернистый материал используется для черновой обработки жаропрочных сталей. Мелкое зерно позволяет создать чистовую поверхность стали, чугуна, фторопласта, алюминия и бронзы.

Газотермический напылитель используется для повышения устойчивости деталей к износу.

Изготавливаются элементы в виде паяльных или сменных пластин. Они устанавливаются на держатель режущего инструмента, изготовленный из конструкционной стали, с помощью болтов и шпилек. Механические параметры улучшаются с помощью обработки поверхности. Например, предел прочности пластины повышается при шлифовке алмазным кругом, что также положительно сказывается на длительности работы и устойчивости к износу.

Область использования вольфрамсодержащих изделий

Применение сплава ВК8, как и другие схожие виды ТС, распространяется на разные отрасли производства, где требуется бурить скважины в абразивных горных породах, резать мрамор, заготавливать уголь, обрабатывать гранит. Также используются изделия из вольфрама в машиностроении для изготовления пар трения подшипников, штампов, пресс-форм.

На шарошках долот и на лапах устанавливаются специальные твердосплавные элементы (зубки) – одним из часто используемых сплавов и является ВК8

Уже сегодня этот вид металла нашел область применения – особо прочные покрытия, создаваемые технологией напыления. Наиболее известный сплав ВП3325 изготавливается на его основе, он улучшает свойства хрупких соединений такими качествами:

теплопроводностью, твердостью;

модулем упругости;

ударной прочностью;

устойчивостью к вибрации.

Пластины из сплава ВП3325

Между тем, такой вид обработки малопрочных материалов обретает все большую популярность и находит применение в медицине, оптике, ювелирной промышленности. Такой подход к приборостроению одновременно снижает себестоимость продукции, а также вольфрамовую потребность. Благодаря возможности использования вторсырья, некоторые даже зарубежные предприятия, обеспечиваются ресурсами без дополнительной их добычи из недр земли.

Основные сведения

Твердые сплавы распространены в различных областях промышленности. Из них изготавливают детали для станков, машин, кораблей, самолётов, крепёжные элементы, строительные пластины и другие изделия. Часто их используют при производстве инструмента. Людям, занимающимся металлургией и кузнечным делом, желательно знать основную информацию о том, что такое твердый сплав.

История открытия

История открытия твердых сплавов начинается с начала 20 века. До этого периода инструменты для обработки металла изготавливали из инструментальной стали, которая была насыщена углеродом. Однако процесс обработки был малопроизводительным и неэкономичным.

К началу 20 века, совместными усилиями металлургов была разработана высоколегированная инструментальная сталь. Она начала использоваться при обработке труднообрабатываемых видов металлов на высоких скоростях. Спустя непродолжительный промежуток времени она получила название «быстрорежущая сталь». Инструменты из неё впервые были продемонстрированы общественности в 1910 году.

Развитие инструментальной технологии на этом не остановилось. На территории СССР, США и Германии начиная с 1925 года смеси твердых металлов начали выпускаться как товарная продукция. Изготавливались такие товары из карбида вольфрама и металлического кобальта. На территории стран СНГ этот сплав получил название — «победит». Однако новым материалом можно было эффективно обрабатывать чугунные заготовки, но не сталь. В связи с этим продолжилась разработка новых соединений и с 1935 годов появилась вольфрамотитановая смесь. Она подходила для обработки стали, но крошилась при работе с чугуном.

В последующие годы начали использовать синтетические алмазы в качестве покрытия рабочих частей инструментов. Ещё одной разработкой стал эльбор — соединение азота и бора.

Марки твердых сплавов: классификация материалов

Твердые сплавы классифицируют по двум основным критериям.

Способ получения

По способу получения твердые сплавы делят на два вида.

  1. Литые. Их изготавливают по технологии литья. К сплавам этой группы относятся стеллиты, сормайты, а также твердые сплавы с большим содержанием никеля. Обычно при производстве применяют прессование и термическую постобработку (закалка, старение, отжиг и пр.). В результате получаются высококачественные материалы. Литые твердые сплавы предназначены для наплавки на инструменты для металлообработки.
  2. Спеченные. Такие твердые сплавы еще называют металлокерамическими из-за того, что технологии изготовления очень похожи. Материалы производят по технологии порошковой металлургии. Ее дополняют лазерная/ультразвуковая обработка или травление в кислотах. На выходе материалы получаются максимально качественными.

Спеченные твердые сплавы закрепляют на инструментах механическим методом или по технологии пайки.

Химический состав

По химическому составу твердые сплавы делят на 4 группы.

  1. Однокарбидные (вольфрамо-кобальтовые). Маркировка — ВК.
  2. Двухкарбидные (титано-вольфрамо-кобальтовые). Маркировка — ТК.
  3. Трехкарбидные (титано-тантало-вольфрамо-кобальтовые). Маркировка — ТТК.
  4. Безвольфрамовые. Маркировка — ТН.

Российская промышленность

Одним из передовых предприятий, занятых в сфере производства и научных разработок, выступает Кировоградский завод твердых сплавов. КЗТС обладает обширным собственным опытом по внедрению инновационных технологий в производство. Это позволяет ему занимать первые позиции на промышленном рынке России. Предприятие специализируется на выпуске спеченных твердосплавных инструментов и изделий, металлических порошков. Выпуск налажен с января 1942 года. В конце 90-х годов на предприятии была проведена модернизация. В течение последних нескольких лет Кировоградский завод твердых сплавов направляет свою деятельность на выпуск усовершенствованных многогранных сменных пластин с износостойкими многослойными покрытиями. Предприятие занимается также разработкой новых безвольфрамовых составов.

Сплавы — Твердые и прочные.

Карбиды вольфрама вкупе с кобальтовой основой характеризуются очень удачным сочетанием прочности и твердости. Эти карбиды и сами по себе имеют очень высокую твердость, которая превосходит даже твердость оксида алюминия — корунда, но их твердость все же немного понижается при повышении температуры. Недостаток карбида вольфрама заключается в его недостаточной прочности. Для вероятного получения высокой твердости, карбиды вольфрама должны быть помещены в металлическую связку. Таким образом, получается материал, который куда более твердый, чем, например, быстрорежущая сталь, но при этом они обладают таким количеством прочности, что его достаточно для противостояния силам резания.
Кроме этого, этот материал отлично подойдет для работы при критически высоких температурах и при обработке на высоких скоростях. С каждым годом количество инструмента из такого твердого сплава, на которое наносится покрытие, увеличивается огромными темпами, а роль основы может казаться уже не такой существенной. В действительности, он больше чем модуль упругости стали, и следовательно, будет куда меньше подвергаться деформации. Свойства основы определяют и параметры прочности итогового продукта. Свойства же основы, безусловно, зависят исключительно от характеристик карбидов тугоплавких металлов и свойства связки, но их можно подвергать вариации и изменять как зернистость карбидной крошки, так и состав самой смеси.

Как получают твердые сплавы

Соединения металлов представляют собой смесь порошков, которые прессуются и запекаются. В её состав входят карбиды и кобальт. Смешивают порошки в формах для запекания, прессуют под давлением от 200 кгс/см2. После обработки давлением формы разогреваются до температуры в 1500 градусов. Готовые соединения используют при получении труднообрабатываемых материалов.

Свойства твердых сплавов

Чтобы понять, какой металл или смесь самый прочный в мире, необходимо знать их свойства. Основные характеристики помогут разбираться в тех или иных видах материалов и грамотно использовать их при производстве. Свойства твердых сплавов:

  1. Высокая механическая и термоударная прочность.
  2. Износоустойчивость.
  3. Красностойкость. Этот показатель проявляется при температурах от 900 и до 1000 градусов.

Такие свойства твердых сплавов, как ударопрочность, пластичность, прочность при сжатии или изгибе и твердость напрямую зависят от количества кобальта, содержащегося в соединениях. Также важен размер зерна карбида вольфрама.

Характеристики твердых сплавов

Чтобы определить самый твердый сплав, необходимо разбираться в характеристиках. К ним относится химический состав соединения металлов, его механические и физические свойства, процесс получения готовых сплавов.

Механические и физические характеристики:

  1. Жаропрочность.
  2. Плотность (14,9г/см3–15,2г/см3).
  3. Твердость (89,5HRA-91 HRA).
  4. Теплопроводность — 51 Вт.
  5. Допустимая прочность — 2150 Мпа.

Также к этим характеристикам можно отнести устойчивость соединений к воздействию коррозийных процессов. Самый твердый сплав обладает завышенным физико-механическими характеристиками.

Марки

По государственным ГОСТам устанавливается специальная маркировка, которой отмечаются все соединения твердых металлов. Она представляет собой заглавные буквы и цифры:

  1. ВК6М — вольфрамокобальтовая смесь. Цифра 6 указывает на количество кобальта в составе. Буква «В» указывает на вольфрам, соответственно буква «К» — кобальт. Буква «М» обозначает то, в какой сфере применяется этот сплав. Из него изготавливают инструменты для обработки металлов.
  2. ВК2 — в этом случае в смеси содержится 2% кобальта и 98% вольфрама.
  3. ВК8 — в этой смеси кобальта содержится до 8%.
  4. Т14К8 — в таких соединениях содержится третий элемент — титан. Его в составе содержится 14%. Кобальта 8%. Всё остальное это вольфрам.
  5. Т5К10 — аналогична предыдущей смеси, в которой 5% титана, 10% кобальта и 85% вольфрама.
  6. ТТ7К12 — к указанным выше элементам добавляется тантал. Его процентное содержание такое же, как и у титана.

Марки сплава указываются на готовых деталях и заготовках.

Области применения

Существует множество сфер применения твердых сплавов. К ним относятся:

  1. Производство инструмента для обработки металла.
  2. Изготовление деталей для промышленного оборудования.
  3. Оснастка для работы с металлическими заготовками.

Часто твердые сплавы используются в качестве напыления на более мягкие. Сферы применения доходят вплоть до постройки крупного транспорта.

Классификация

Существует специальная международная классификация, именуемая «ИСО». Она разделяет отечественные и зарубежные твердые сплавы по области применения. Маркируется буквами из латинского алфавита:

  1. К — используется для чугуна.
  2. N — обработка цветных металлов и сплавов аналогичным им.
  3. H — применяется при работе с закаленной сталью.
  4. M — для нержавеющей стали.
  5. P — для отливок со сливной стружкой.
  6. S — для работы с жаропрочными сплавами.

Помимо этой классификации, есть разделение по химическим элементам, содержащимся в составе, и количеству основных металлов.

Вольфрамосодержащие

Эти соединения используются при изготовлении режущего инструмента. Они могут маркироваться как ВК или ВКМ. Цифры будут обозначать процентное содержание тех или иных элементов.

Титановольфрамосодержащие

Из этих соединений изготавливают оснастку для обработки стали на высоких скоростях. Марка этих сплавов — ТК. Цифры указывают на содержание кобальта и титана.

Применение вольфрама

При помощи такого металла происходит активное создание нити накаливания, нагревателей, экраны вакуумных печей, рентгеновские трубки, которые нужны для использования в условиях повышенной температуры.

Сталь, легированная вольфрамом, обладает высокими качествами прочности. Готовая продукция из таких разновидностей сплавов применяется для создания инструментов широкого использования: бурение скважин, медицина, изделия для качественной обработки материалов в процессе машиностроения (особые режущие пластины). Главным достоинством таких соединений станет особая устойчивость к истиранию, небольшая вероятность развития трещин во время эксплуатации вещи. Самой известной в процессе строительства считается марка стали с применением вольфрама, которая имеет название победит.

Химическая промышленность также нашла в себе место для использования металла. Из него можно производить краски, пигменты и катализаторы.

Атомная промышленность применяет тигли из этого металла, а также специализированные контейнеры для хранения наиболее радиоактивных отходов.

О нанесении покрытия из элемента уже было указано выше. Оно используется для нанесения на такие материалы, которые работают при воздействии высоких температур в восстановительной, а также нейтральной среде, как специальная защитная плёнка.

А также есть такие прутки, которые применяются и в других сварках. Так как вольфрам неизменно продолжает оставаться самым тугоплавким металлом, то во время проведения сварочных работ он применяется со специальными присадочными проволоками.

Вольфрам в быту можно применять, главным образом, в электротехнической цели.

Именно его стоит использовать в качестве основного компонента (легирующий элемент) в процессе производства быстрорежущей стали. В среднем показатель содержания вольфрама варьируется от девяти до двадцати процентов. Кроме всего этого, он находится в составе инструментальной стали.

Такие разновидности стали используются во время производства свёрл, штампов, пуансонов и фрез. К примеру, быстрорежущие стали P6 M5 говорят о том, что сталь была легирована молибденом и кобальтом. Кроме этого, вольфрам включает в себя магнитные стали, которые стоит разделять на вольфрамокобальтовые и вольфрамовые разновидности.

Вещество в повседневной жизни в чистом виде почти невозможно встретить. Карбид вольфрама представлен в качестве соединения металла с углеродом. Соединение таких веществ отличается высокой твёрдостью, износостойкостью, а также тугоплавкостью. На базе карбида вольфрама можно создавать инструментальные, производительные твёрдые сплавы, которые имеют около 90 процентов вольфрама и около 10 процентов кобальта. Из твёрдых сплавов можно изготавливать режущие части как бугровых, так и режущих инструментов.

Главная область использования вольфрама — это сварка металлов. Из сварки можно создавать особые электроды, которые используют для другого типа сплавки. Получаемые электроды можно назвать неплавящимися.

Характеристика металлов

Металлы — это группа из более 90 простых веществ из периодической таблицы Менделеева. В природе они редко обнаруживаются в чистом виде, поэтому их чаще всего добывают из руды. Так называют вид полезных ископаемых, которые представляют собой соединение нескольких химических компонентов, вроде минералов и тех же самых металлов. Металлам характерны несколько свойств, по которым их разделяют по группам:

  • твердость — сопротивление к проникновению в материал другого, более твердого тела;
  • прочность — стойкость к разрушению под воздействием внешней нагрузки;
  • упругость — изменение формы материала под воздействием внешних сил и восстановление ее после того, как эти силы перестают на нее воздействовать;
  • пластичность — изменение формы материала под внешним воздействием и сохранение ее после устранения этого воздействия;
  • износостойкость — сохранение хорошего внешнего вида и физических свойств материала после сильного трения;
  • вязкость — способность материала вытягиваться под воздействием внешних сил;
  • усталость — свойство материала выдерживать многократные нагрузки;
  • жароустойчивость — сопротивление окислительным процессам при нагревании до высоких температур.

Слесарное дело

Глава IV. Твердые сплавы

В зависимости от способа получения твердых сплавов их можно подразделить на две группы: металлокерамические (полученные спеканием) и литые (наплавочные).

Металлокерамические сплавы изготовляют спеканием порошка карбидов вольфрама, титана и другого тугоплавкого металла и связующего порошка кобальта.

Металлокерамические твердые сплавы относятся к группе материалов, обладающих большой твердостью, красностойкостью (до температуры 1200°С), высокими свойствами резания металлов (при обработке стали марки 45 до 2700 м/мин, алюминия выше 5000 м/мин) и сопротивлением истиранию.

В отличие от углеродистой стали металлокерамические твердые сплавы никакой термической обработки не требуют.

Металлокерамические твердые сплавы широко применяются для обработки металлов резанием (изготовление режущих инструментов), давлением (при волочении, штамповке, калибровании и др.); металлические твердые сплавы используются также для изготовления зубьев врубовых машин, бурильных молотков, сверл, а также в ряде других отраслях техники.

Основой твердых металлокерамических сплавов являются карбиды (химические соединения с углеродом вольфрама, титана и кобальта).

Форма пластин — самая разнообразная и зависит от конструкции режущего инструмента. Пластины твердых сплавов служат для оснащения резцов, фрез, шаберов, сверл, зенкеров и других режущих инструментов.

Металлокерамические твердые сплавы делятся на три группы (ГОСТ 3882—61):

  1. вольфрамовые твердые сплавы, состоящие из зерен карбида вольфрама, сцементированных кобальтом: ВК, ВК8, ВК10, ВК30 и др.;
  2. титановольфрамовые твердые сплавы, состоящие из зерен твердого раствора карбида вольфрама, сцементированных кобальтом, или только из зерен твердого раствора карбида вольфрама в карбиде титана, сцементированных кобальтом: Т5К10, Т15К6, Т14К8 и др.;
  3. титанотанталовольфрамовые твердые сплавы, состоящие из зерен твердого раствора карбида титана, карбида тантала, карбида вольфрама и избыточных зерен карбида вольфрама, сцементированных кобальтом, марка ТТ7К12.

Буквы в марках твердого сплава означают: В — карбид вольфрама, К — кобальт, Т — карбид титана; цифры, стоящие после букв, показывают процентное содержание данного металла в сплаве. Например, марка ВК2 расшифровывается следующим — карбид вольфрама; Т15К6 — титанововольфрамовый сплав с содержанием 15% карбида титана и 6% кобальта, остальное — карбид вольфрама.

Вольфрамовые твердые сплавы ВК применяются при обработке хрупких материалов: чугуна, бронзы, стекла, фарфора и др.

Титановые сплавы ТК — для вязких материалов: стали, латуни и др.

Титанотанталовые сплавы ТТК — для черновой обработки стальных заготовок с ударами и загрязненные коркой.

Наплавочные твердые сплавы применяются для наплавки (покрытия) в расплавленном состоянии (с помощью газа или дуги) рабочих поверхностей быстроизнашивающихся деталей машин, приспособлений, инструментов с целью повышения их износоустойчивости и коррозионной стойкости.

Наплавочные сплавы делятся на три группы: литые, электродные и зернообразные.

Литые сплавы получают в виде прутков диаметром 5— 7 мм, длиной 200—300 мм, которые затем при помощи газа наплавляют на режущие кромки или поверхности деталей, подвергающихся износу.

Минералокерамические сплавы в отличие от металлокерамических сплавов весьма дешевы, не содержат вольфрама, титана, кобальта и железа. Изготовляются они на основе окиси алюминия (Аl203)—корунда путем тонкого размола, прессования и спекания. В настоящее время выпускаются минералокерамические материалы марок ЦВ (термокорунд) и ЦМ (микролит), из которых изготовляют пластинки (марки ЦВ-13, ЦВ-18, ЦМ-332), используемые в качестве заменителя быстрорежущей стали и твердого сплава при чистовом и получистовом точении чугуна, стали и цветных металлов.

Керамические материалы имеют достаточную прочность на сжатие (до 500 кГ/мм2, высокую твердость (HRA 89—95), теплостойкость (около 1200° С) и износостойкость, что позволяет вести обработку металла на высоких скоростях резания (до 3700 м/мин при чистовом обтачивании чугуна).

Однако в связи с чрезвычайной хрупкостью минералокерамические пластинки широкого практического применения пока не нашли.

Основные марки твердых сплавов, их состав и физико-механические свойства

Расскажем в деталях о твердых сплавах вышеперечисленных групп.

Однокарбидная группа

Таблица с марками вольфрамо-кобальтовых твердых сплавов; их состав и основные физико-механические свойства.

Марка твердого сплава Состав (%) Физико-механические свойства
Карбид тантала Кобальт Карбид вольфрама Предел прочности при изгибе (МПа) Твердость по Роквеллу (HRA) Плотность (10-3, кг/м3)
ВК3 3 97 1176 89,5 15–15,3
ВК3-М 3 97 1176 91 15–15,3
ВК4 4 96 1519 89,5 14,9–15,2
ВК6 6 94 1519 88,5 14,6–15
ВК6-М 6 94 1421 90 14,8–15,1
ВК6-ОМ 2 6 92 1274 90,5 14,7–15
ВК8 8 92 1666 87,5 14,4–14,8
ВК10 10 90 1764 87 14,2–14,6
ВК10-М 10 90 1617 88 14,3–14,6
ВК10-ОМ 2 10 88 1470 88,5 14,3–14,6

«М» в маркировках говорит о том, что сплав является мелкозернистым. Материалы с маркировкой «ОМ» обладают особой мелкозернистостью.

Это самая распространенная группа твердых сплавов. Из них изготавливают различные детали, изделия, конструкции и инструменты с высокими показателями жаростойкости. Отличный пример — борфрезы ВК8.

Двухкарбидная группа

Таблица с марками титано-вольфрамо-кобальтовых твердых сплавов; их состав и основные физико-механические свойства.

Марка твердого сплава Состав (%) Физико-механические свойства
Карбид титана Кобальт Карбид вольфрама Предел прочности при изгибе (МПа) Твердость по Роквеллу (HRA) Плотность (10-3, кг/м3)
Т30К4 30 66 4 980 92 9,5–9,8
Т15К6 15 79 6 1176 90 11,1–11,6
Т14К8 14 78 8 1274 89,5 11,2–11,6
Т5К10 6 85 9 1421 88,5 12,4–13,1
Т5К12 5 83 12 1666 87 13,1–13,5

Титано-вольфрамо-кобальтовые твердые сплавы предназначены для изготовления инструментов, используемых для резания сталей, дающих сливную стружку. Наличие титана в составе снижает адгезию при обработке деталей и заготовок. Повышаются износостойкость и твердость, но понижается прочность.

Трехкарбидная группа

Таблица с марками титано-вольфрамо-танатало-кобальтовых твердых сплавов; их состав и основные физико-механические свойства.

Марка твердого сплава Состав (%) Физико-механические свойства
Карбид титана Кобальт Карбид вольфрама Карбид тантала Предел прочности при изгибе (МПа) Твердость по Роквеллу (HRA) Плотность (10-3, кг/м3)
ТТ7К12 4 12 81 3 1666 87 13–13,3
ТТ8К6 8 6 84 2 1323 90,5 12,8–13,3
ТТ10К8–Б 3 8 82 7 1617 89 13,5–13,8
ТЕ20К9 9,4 9,5 67 14,1 1470 91 12–13
Т8К7 7,5 7 85 0,5 1519 90,5 12,8–13,1

Добавление в состав карбида тантала приводит к еще большему увеличению износостойкости. Стоимость твердых сплавов этих марок находится на высоком уровне.

Безвольфрамовые твердые сплавы группа

Таблица с марками безвольфрамовых твердых сплавов; их состав и основные физико-механические свойства.

Марка твердого сплава Состав (%) Физико-механические свойства
Карбид титана Карбонитрит Титана Молибден Никель Предел прочности при изгибе (МПа) Твердость по Роквеллу (HRA) Плотность (10-3, кг/м3)
ТН20 79 6 15 1050 90 5,5–6
КНТ16 74 6,5 19,5 1200 89 5,5–6

Безвольфрамовые твердые сплавы отличаются меньшими прочностью и теплостойкостью по сравнению с материалами всех предыдущих групп.

Повышение стойкости

Несмотря на все свои достоинства, рано или поздно режущие пластины из ВК8 затупляются. Резцы с напайными пластинами перетачивают на наждачных станках. Это сложная операция, поскольку при переточке должны быть обеспечены соответствующие углы.

В случае со сменными пластинами все гораздо проще. Пластинку переворачивают или меняют на новую. Для повышения стойкости пластин из ВК8 используют напыление нитридом титана или нитридом бора. Наверняка многие видели пластины золотистого цвета.

Еще один способ, позволяющий продлить срок работы пластин из ВК 8. Это диффузионное обогащение изделия из ВК8 в легкоплавком расплаве, состоящего из висмута и свинца. Операция состоит из двух частей. Первая включает проведение заблаговременной цементации заготовки, а вторая дальнейшее обогащение детали в упомянутом расплаве.

После проведенных мероприятий, нацеленных на повышение прочностных характеристик, стойкость ВК8 вырастает до 120 минут, в то время как необработанный слав обычно стоит не более часа. В итоге можно сделать простое заключение: использование ВК8 в обрабатывающей отрасли влечет за собой рост производительности труда и снижение выпуска некондиционной продукции.

Разработки

Сегодня в отечественной промышленности проводятся различные исследования, включающие глубокий анализ возможности повышения характеристик твердых сплавов. Главным образом они касаются гранулометрического и химического состава материалов.

В качестве довольно удачного примера за последние несколько лет можно привести соединения группы ТСН. Такие сплавы специально разработаны для узлов трения, работающих в агрессивной кислотной среде. Эта группа продолжает разработки новых соединений в группе ВН, предложенных Всероссийским НИИТС.

При проведении исследований было установлено, что при уменьшении размера зерна карбидной фазы значительно повышаются такие характеристики, как прочность и твердость сплавов. Использование технологий регулирования и плазменного восстановления гранулометрического состава на сегодняшний день позволяют выпускать материалы, величина фракции в которых менее микрона. Сплавы марки ТСН сегодня широко используются в производстве узлов нефтегазовых и химических насосов.

Как получают твердые сплавы

Соединения металлов представляют собой смесь порошков, которые прессуются и запекаются. В её состав входят карбиды и кобальт. Смешивают порошки в формах для запекания, прессуют под давлением от 200 кгс/см2. После обработки давлением формы разогреваются до температуры в 1500 градусов. Готовые соединения используют при получении труднообрабатываемых материалов.

Свойства твердых сплавов

Чтобы понять, какой металл или смесь самый прочный в мире, необходимо знать их свойства. Основные характеристики помогут разбираться в тех или иных видах материалов и грамотно использовать их при производстве. Свойства твердых сплавов:

  1. Высокая механическая и термоударная прочность.
  2. Износоустойчивость.
  3. Красностойкость. Этот показатель проявляется при температурах от 900 и до 1000 градусов.

Такие свойства твердых сплавов, как ударопрочность, пластичность, прочность при сжатии или изгибе и твердость напрямую зависят от количества кобальта, содержащегося в соединениях. Также важен размер зерна карбида вольфрама.

Характеристики твердых сплавов

Чтобы определить самый твердый сплав, необходимо разбираться в характеристиках. К ним относится химический состав соединения металлов, его механические и физические свойства, процесс получения готовых сплавов.

Механические и физические характеристики:

  1. Жаропрочность.
  2. Плотность (14,9г/см3–15,2г/см3).
  3. Твердость (89,5HRA-91 HRA).
  4. Теплопроводность — 51 Вт.
  5. Допустимая прочность — 2150 Мпа.

Также к этим характеристикам можно отнести устойчивость соединений к воздействию коррозийных процессов. Самый твердый сплав обладает завышенным физико-механическими характеристиками.


Жаропрочный металл

Марки

По государственным ГОСТам устанавливается специальная маркировка, которой отмечаются все соединения твердых металлов. Она представляет собой заглавные буквы и цифры:

  1. ВК6М — вольфрамокобальтовая смесь. Цифра 6 указывает на количество кобальта в составе. Буква «В» указывает на вольфрам, соответственно буква «К» — кобальт. Буква «М» обозначает то, в какой сфере применяется этот сплав. Из него изготавливают инструменты для обработки металлов.
  2. ВК2 — в этом случае в смеси содержится 2% кобальта и 98% вольфрама.
  3. ВК8 — в этой смеси кобальта содержится до 8%.
  4. Т14К8 — в таких соединениях содержится третий элемент — титан. Его в составе содержится 14%. Кобальта 8%. Всё остальное это вольфрам.
  5. Т5К10 — аналогична предыдущей смеси, в которой 5% титана, 10% кобальта и 85% вольфрама.
  6. ТТ7К12 — к указанным выше элементам добавляется тантал. Его процентное содержание такое же, как и у титана.

Марки сплава указываются на готовых деталях и заготовках.

Области применения

Существует множество сфер применения твердых сплавов. К ним относятся:

  1. Производство инструмента для обработки металла.
  2. Изготовление деталей для промышленного оборудования.
  3. Оснастка для работы с металлическими заготовками.

Часто твердые сплавы используются в качестве напыления на более мягкие. Сферы применения доходят вплоть до постройки крупного транспорта.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: