Электроэрозионные станки и принцип работы

Электроэрозионные прошивные станки

Электроконтактная прошивочная обработка металлов заключается в воздействии точечного электрода с заданной формой поперечного сечения, от которого зависит форма эрозионного углубления в заготовке. Применяются они для обработки:

  • нержавеющих сталей;
  • инструментальных сплавов;
  • титана;
  • закаленной стали.

Но работать могут со всеми видами токопроводящих материалов, когда требуется изготовление отверстий или углублений большой глубины с минимальным диаметром и точной геометрией сечения.

Одной из самых сложных операций прошивочного станка является изготовление резьбовых отверстий в тугоплавких материалах высокой прочности. В этом случае используются только станки с ЧПУ. Электрод из тонкой проволоки заводится внутрь отверстия и перемещается в продольном и поперечном направлении (по осям X,Y, с одновременным перемещением по оси Z). Получается отверстие со сложной конфигурацией стенки, резьбовой или иного профиля.

Электроконтактная обработка позволяет получать высокоточные оттиски штампов, пресс-форм или иных малогабаритных деталей. В этом случае электрод является миниатюрной копией требуемого изделия, изготовленной из меди или графита. В зависимости от полярности соединения на заготовке получаются четкие углубления или не менее четкие выступы. Такие электроэрозионные станки производятся как в стационарном, так и в настольном исполнении (например, G11 ARAMIS (Чехия)).

Принцип работы станков электроэрозионного типа

Несмотря на разницу в конструктивном исполнении оборудования и реализуемых способах электроэрозионной обработки, принцип функционирования остается одинаковым.

Условно процесс можно разделить на два технологических этапа.

 Первый.  Под воздействием импульсных разрядов, поступающих «по плазменному каналу» (10), разрушается структура образца (2) на данном участке. Они появляются в определенный момент при сближении электрода (4), являющимся рабочим инструментом станка, с деталью. Электрическая энергия преобразуется в тепловую, и как результат – расплавление металла (сплава) на требуемом по ТУ участке.

 Второй.  Так как и деталь, и электрод погружены в емкость со спец/составом (чаще всего это масло), металл частично испаряется от высокой температуры, а остатки расплава удаляются из рабочей зоны.

В зависимости от реализуемого способа обработки и инженерного решения в конструкции станка, параметры импульсов, технология их генерирования и ряд других факторов в различных моделях электроэрозионных установок могут отличаться. Но принцип работы оборудования остается прежним.

Приложенное напряжение «пробивает» зазор между электродом и «болванкой», в результате чего возникает так называемый «плазменный канал», характеризующийся высокой температурой. У основания этого «столба» появляется расплав металла, который удаляется из рабочей зоны.

В принципе, такую «чудо-машину», как электроэрозионный станок, можно изготовить самостоятельно.  Но кажущаяся простота сборки обманчива. Прежде чем приниматься за работу, следует оценить свои силы. Главная сложность, с которой столкнется «домашний умелец» – монтаж (а перед этим точный расчет параметров) искрового генератора

Кроме того, эксплуатация данного станка требует особой осторожности, так как емкость с маслом в любой момент может воспламениться

Автор не ставит целью отговорить читателя от самостоятельного изготовления бытового электроэрозионного станка, но обратить внимание на ряд моментов просто обязан

Возможности электроэрозионного оборудования

Спектр использования электроэрозионных станков действительно огромен. Из основных технологических операций можно выделить:

  • получение отверстий (глухих проемов, углублений) самой сложной конфигурации, при необходимости, с резьбой;
  • выборка материала на любую глубину с внутренних поверхностей образцов;
  • выполнение операций, которые невозможно или экономически нецелесообразно проводить на других типах станков (фрезерных, токарных);
  • изготовление деталей из материалов, трудно поддающихся обработке традиционными инструментами (например, титан и сплавы на его основе).

Привод главного движения в станке

Привод подачи электрода-инструмента является самым главным исполнительным механизмом в прошивных станках. Передача движения от электродвигателя к ЭИ может осуществляться реечной передачей, винтовой передачей или дифференциальной передачей.

Рассмотрим два вида привода подач и сравним какой их них является более предпочтительным:

1) Электромеханический привод: ходовой винт получает вращательное движение через редуктор от электрического двигателя постоянного тока. Вращение ходового винта 1 происходит в гайке, которая закрепляется в шпинделе. Шпиндель получает возвратно-поступательное движение тем самым, выполняя подвод ЭИ, а после окончания обработки отвод ЭИ. Опорами для шпинделя служат подшипники.

2) Электрогидравлический привод: для того чтобы поршень двигался в режиме колебаний соленоид с обмотками включается в сеть переменного тока. Соленоид управляет движением поршневого золотника. Золотник реагирует на изменение межэлектродного пространства между ЭИ и обрабатываемой деталью, когда получает сигнал на обмотке соленоида сигнал, золотник перемещается, и поршень связанный с золотником перемещается в цилиндре.

После просмотра принципа работы приводов, стало понятно, что с точки зрения быстродействия системы и стабильности подач электрогидравлический привод оказался предпочтительнее. С помощью такого привода можно создавать достаточно большие усилия при обработке. Но если смотреть, с другой стороны, со стороны точности обработки, то электромеханический привод уступает электрогидравлическому. Объясняется это устранением люфта. Однако электрический гидропривод имеет большие размеры и вес, да и то стоимость этого привода высокая.

Кинематическая схема копировально-прошивочного станка 4е723

Кинематическая схема копировально-прошивочного станка 4е723

Кинематические схемы универсальных копировально-прошивочных станков должны обеспечивать необходимые перемещения рабочих элементов станка, ЭИ и электрода-заготовки:

  • перемещение электрода—инструмента в продольном и поперечном направлениях;
  • установочное вертикальное перемещение электрода—инструмента;
  • рабочую вертикальную подачу электрода—инструмента;
  • опускание ванны станка;
  • вертикальную вибрацию электрода—инструмента;
  • установочное вращательное движение электрода—инструмента

В тяжелых станках пятого и шестого типоразмеров предусмотрен отвод рабочей головки станка из рабочей зоны, что облегчает установку заготовки на стол станка и съем изделия после ЭЭО. Все выпускаемые промышленностью серийные станки имеют вертикальную компоновку. Вертикальная компоновка позволяет просто и надежно защитить рабочие органы станка от загрязнения продуктами эрозии и сокращает занимаемую станком производственную площадь. Все настроечные и рабочие перемещения имеют ручное управление и электрические приводы перемещений. Универсальные станки, как правило, снабжены тумбообразным столом и подъемной ванной или ванной с откидными стенками, которые открываются после слива рабочей среды. Такая конструкция рабочего стола придает ему большую жесткость и позволяет обрабатывать любые тяжелые заготовки, размыкающиеся на рабочем столе станка.

Электрическая и кинематическая схемы станков предусматривают: ступенчатое или плавное регулирование рабочих режимов электрических приводов различных агрегатов станка и управление циклом его работы; систему подачи рабочей среды в ванну станка и прокачку рабочей среды через ЭИ; отсчет вертикального перемещения шпинделя и выключение станка при достижении заданной величины перемещения (обработки); регулирование амплитуды вибрации ЭИ. Станки снабжаются устройствами и приборами контроля режимов работы станка, устройствами блокировки, защиты и коротких замыканий, возникающих из-за возможных касаний электродов, системой автоматического регулирования подачи электрода—инструмента и другими системами контроля и регулирования в зависимости от типоразмера станка.

Конструкция электроэрозионного станка

Станки такого типа состоят из следующих узлов:

  1. Защитный щиток барабана.
  2. Барабан проволочный.
  3. Подвижный стол проволочного барабана.
  4. Концевики-ограничители для настройки использования намотанной проволоки на барабане, а также кнопки для переключения направления вращения.
  5. Регулировка подачи СОЖ снизу и сверху.
  6. Панель, предназначенная для управления устройством.
  7. Шкаф электрооборудования устройства.
  8. Конические опоры станка, настраиваемые по высоте.
  9. Литая станина коробчатого типа, отлитая из чугуна.
  10. Проушины монтажные.
  11. Колесо, предназначенное для вертикальной подачи верхнего рукава.
  12. Колонна.
  13. Осветительная лампа.
  14. Механизм, позволяющий осуществлять наклон проволоки.
  15. Нижний рукав, состоящий из двух направляющих роликов и одного твердосплавного электрода.
  16. Рабочий стол.
  17. Кожух рабочего стола, защищающий от брызг.
  18. Верхний рукав, состоящий из трёх направляющих роликов и двух твердосплавных электродов.
  19. Колёса для подачи рабочего стола.

Далее будут рассмотрены более подробно несколько отдельных частей механизма электроэрозионных станков.

Станина станка

Данная деталь отливается из чугуна. В камере сняты внутренние напряжения. Внутреннее пространство станины предназначено для монтажа электрооборудования, так как сама станина имеет коробчатый тип. Рабочая часть станины в прецизионно отшабрена и отшлифована в некоторых местах, а именно: на каретке барабана, на креплениях колонны и на направляющих рабочего стола.

Рабочий стол станка

Это очень важная составляющая электроэрозионного станка. Состоит рабочий стол из двух плит, которые установлены на шарико-роликовые направляющие. Плиты устанавливают друг над другом.

Если существует потребность в перемещении стола, то нужно задействовать два шаговых двигателя. Делается это при помощи двух шарико-винтовых пар. Также можно менять положение рабочего стола вручную, при этом используя колесо подачи, которые закреплены всё на тех же валах шарико-винтовых пар.

Проволочный конвейер

Данная часть станка состоит из проволочного барабана, а также системы роликовых направляющих, которые размещены в нижнем и верхнем рукавах.

Управляющий компьютер и генератор могут быть размещены либо в стойке, либо в рабочем столе с тумбой. Отличия лишь в стоимости устройства, монолитности компоновки, а также в дизайне всего оборудования.

Приводы подач станка

Электроэрозионное разрушение осуществляется в рабочей среде, которая подаётся в МЭП. Поэтому каждый ЭЭП станок оснащен системой подачи рабочей жидкости, что представлено на рисунке 5. Так как в процессе обработки происходит загрязнение рабочей жидкости, то в компоновку станка входит и система регенерации рабочей жидкости. В ЭЭП станках обычно эти две системы объединены.

Рис. 5 — Система подачи и регенерации РЖ

  1. Емкость
  2. Гидроносос
  3. Манометр
  4. Система фильтрации
  5. Гидрораспределитель
  6. Вентиль
  7. Гидроприемник
  8. Ротаметр
  9. Кран
  10. Кран
  11. ЭИ
  12. Деталь
  13. Рабочая ванна
  14. Слив

Рабочая жидкость из емкости >> гидронасос. Регулирование подачи рабочей жидкости — манометром. Поток рабочей жидкости >> систему фильтрации >> гидрораспределитель. При превышении требуемого давления открывается вентиль и часть рабочей жидкости >> гидроприемник >> либо через кран 10 в рабочую ванну, либо через кран 9 через полый ЭИ. Обрабатываемая деталь находится в рабочей ванне. Для регенерации рабочая жидкость >> рабочей ванны через слив.

Устройство электроэрозионного станка

Существует множество типов станков. Однако вышеописанные принципы работы справедливы абсолютно для каждого из них, будь то электроэрозионный прошивной станок или станок для электроискровой обработки.

Может показаться, что данное технологическое оборудование является невероятно сложным и дорогостоящим. Дорогостоящим, возможно. Особенно если станок произведет именитым брендом. Однако сам принцип работы оборудования довольно прост. В Сети появилось множество видеороликов, в которых умельцы воспроизводят эти процессы. Причем они собирают электроэрозионные станки своими руками в условиях домашних любительских мастерских.

Сам станок, как и любой другой станок для обработки металлов и других материалов, включает станину (основание), ванну для электролита, шпиндельную головку, пульт управления для оператора (это может быть и полноценная система числового программного управления), различную автоматику. Это основные компоненты. Отдельные станки могут дополнительно оснащаться системой фильтрации электролита и другими устройствами.

Выбор технических характеристик станка

Проанализируем, при каких «критериях» выбираются электроэрозионные станки.

1) Геометрические параметры

Для того чтобы выбрать прошивной станок, который в свою очередь создает размерный ряд, нужно для начала просмотреть массу и габаритные размеры.

2) Производительность

Влияние электроэрозионных станков на производительность:

  • параметры импульсов разрядного тока;
  • условия подвода рабочей жидкости и характеристики ее потока;
  • материал и качество электрод-инструмента;
  • способ защиты проволоки от обрывов.

3) Точность

Критерии от которых зависит точность:

— жесткость;

— точность и повторяемость позиционирования по различным осям;

— динамические характеристики приводов;

— уровень температурных деформаций;

— стабильность параметров импульсов генератора;

— устойчивость устройства ЧПУ к помехам.

4) Шероховатость

Преимущества специальных электроэрозионных станков

Станки весьма востребованы на рынке благодаря своим многочисленным достоинствам.

Основными достоинств электроэрозионных станков считаются:

  1. Высокая степень автоматизации. Оператор, управляющий оборудованием, способен по своему усмотрению задавать основные параметры обработки, величину давления, скорость и т.д. После того, как все они будут указаны, станок станет работать в полностью автоматизированном режиме.

Многофункциональность. Помимо своего непосредственного назначения рассматриваемое оборудование может использоваться также для финальной доводки деталей, для объемного копирования, отрезания и проведения других операций.
Надежность и долговечность.

Производительность. Современные электроэрозионные станки, принцип работы которых был рассмотрен выше, позволяют гарантировать высочайшее качество обработки деталей за короткое время.

Достойный уровень безопасности. Производители делают все, чтобы минимизировать риски, возникающие в процессе эксплуатации их оборудования.

Все перечисленные преимущества очень важны, но присущи они только оборудованию от надежных производителей. Поэтому, если вы заинтересованы в выборе электроэрозионных станков, внимательно ознакомьтесь с представленным на рынке ассортиментом, чтобы отдать предпочтение самым достойным моделям.

Принцип работы электроэрозионного станка

При ознакомлении с принципом работы подобного оборудования у многих возникает ассоциация с электродуговой сваркой. И это вполне логично. Ведь для протекания эрозионных процессов необходимо получить электрический разряд. С этой целью между электродами создается разница потенциалов. Одним из электродов при этом служит обрабатываемое изделие, а вторым – электрод станка.

Когда электрод приближается к заготовке на критическое расстояние, то происходит так называемый пробой. Иными словами, электроны совершают работу выхода и устремляются по воздуху к катоду (обрабатываемой заготовке).

Электроны, соударяясь с поверхностью обрабатываемого изделия, в считаные доли секунды разогревают его до невероятно больших температур (10 000 и более градусов по Цельсию). Температура плавления даже самых тугоплавких материалов в разы меньше. Таким образом, слой металла моментально испаряется, образуются углубления по форме рабочего инструмента электроэрозионного станка.

Направляющие станка

Направляющие служат для перемещения по станине подвижных узлов станка, обеспечивая правильность траектории движения заготовки или детали и для восприятия внешних сил. Во всех металлорежущих станках применяются направляющие: скольжения, качения, комбинированные, жидкостного трения, аэростатические.

Предъявляющие требования: первоначальная точность изготовления, долговечность, высокая жесткость, высокие демпфирующие свойства, малые силы трения, простота конструкции, возможность обеспечения, регулирования зазора-натяга.

В зависимости от расположения направляющие делятся также на горизонтальные, вертикальные, наклонные.

Компоновка станка

Основными узлами электроискровых станков являются: станина, механизм для установочных перемещений, рабочая ванна, насосная установка, генератор электрических импульсов и регулятор подачи. Станина является связующим звеном для основных узлов.

Механизм перемещений установки деталей и инструмента применяется, как и в металлорежущих станках.

Состав: ходовая часть, которая перемещается с помощью винтовых или шестеренных пар.

Рабочая ванна состоит из тонкой листовой стали и представляет собой цельносварную конструкцию. Клеммник крепится «на боку» рабочей ванны для того чтобы электроды присоединялись к разрядному контуру. От насосной установки подается рабочая жидкость. Размеры ванны зависят от деталей. Насосная установка представляется в виде емкости 50-60 литров.

Генератор импульсов. Для получения разрядов используется схема, которая включает в себя рабочие электроды, батарею, измерительную аппаратуру, источник постоянного тока и регулируемое сопротивление. Подробнее о нем рассмотрим ниже.

Электроэрозионный станок имеет искровой генератор, который выступает в качестве конденсатора. Принцип обработки заключается в накоплении энергии в течение длительного времени, а затем ее выброс в течение короткого промежутка времени.

Что такое электроэрозионная обработка

Электроэрозионный станок представляет собой высокотехнологическое оборудование, которое предназначено для пространственной точной обработки любого металла.

Такой вид обработки подразумевает изменение формы, размера, структуры и свойств поверхности электропроводной заготовки. Изменения появляются из-за воздействия электрических зарядов, которые возникают между электродом и самим металлом.

Существует несколько видов электроэрозионной обработки:

  1. Комбинированная – обработка при помощи электрода осуществляется одновременно с другими видами обработки.
  2. Абразивная – ведется при использовании специального разрушителя металла.
  3. Химическая – подразумевает не только использование электроэрозионного станка, но и химического растворителя для обрабатываемого материала.
  4. Электроэрозионное упрочнение. Использование этой технологии приводит к тому, что физические свойства материала существенно улучшаются.
  5. Электроэрозионное маркирование.
  6. Вырезание.
  7. Отрезка.
  8. Шлифование при использовании электроэрозионного разрушения металла.

Данной технологии обработки подвергаются любые материалы, которые проводят электрический ток. Преимущественно это металлы

У технологии электроэрозионного воздействия только два недостатка – высокое энергопотребление, что немаловажно, и небольшая производительность, так как оборудование отличается малой скоростью подачи

Применение электроэрозионных станков разных типов

Самым популярными электроэрозионными станками на сегодняшний день являются проволочно-вырезные станки. Они бывают на одноразовой латунной проволоке и на многоразовой молибденовой проволоке. Станки на многоразовой проволоке серии DK77 применяются не только в инструментальном производстве для изготовления штампов, шаблонов, пресс-форм, калибров и другого инструмента, но и для изготовления деталей механического производства. Например, шлицевых втулок, муфт, изготовления зубчатых деталей – звездочек, шестерен, заменяя зубофрезерное, зубошлифовальное, долбежное и другое оборудование. Станки на многоразовой проволоке стоят дешевле других электроэрозионных станков и обладают низкой себестоимостью обработки. Скорость обработки до 180 мм2/мин, точность порядка 15 мкм, а достижимая шероховатость 0.8 Ra.

Из оборудования  электроискрового типа одним из наиболее точных считается копировально-прошивочный станок МА4720. Он предназначен для работ с труднообрабатываемыми заготовками сложной конфигурации, например, для твёрдосплавной штамповой оснастки, пресс-форм, кокилей. Производительность станка не превышает 70 мм3/мин, зато можно достичь точности в 0,03…0,04 мм, при достаточно невысокой шероховатости конечной поверхности (не выше Rz 0,32…0,4 мкм на чистовых режимах обработки). Перемещение рабочего стола производится системой ЧПУ. Размеры рабочего стола и допустимый диапазон значений межэлектродного зазора между анодом и катодом не позволяет получать на данном станке изделия с габаритными размерами более 120×180×75 мм.

Примером электроимпульсного станка является распространённая модель 4Е723, также оснащаемая ЧПУ. Более высокие показатели удельной мощности позволяют достигать производительности ЭЭО до 1200м3/мин, при погрешности обработки на чистовых режимах в пределах 0,25…0,1 мм. Более высокая точность достигается при ЭЭО фасонных поверхностей. Станок также используется преимущественно в инструментальном производстве, однако шероховатость поверхности заметно увеличивается – до Ra 2,5 мкм, поэтому после обработки в большинстве случаев потребуется шлифование. На станке можно выполнять ЭЭО деталей с габаритными размерами 620×380×380 мм, а также прорезание фасонных пазов.

Данные виды относятся к универсальным электроэрозионным станкам. Примером специализированного оборудования является электроэрозионный станок модели 4531, производящий профильную вырезку сложных контуров  при помощи непрофилированного электрода. На станке 4531 применяется латунная проволочка, которая непрерывно перематывается через межэлектродный промежуток, возбуждая разряд между катодом и анодом. При относительно невысокой производительности (не более 16…18 мм3/мин по стали; для твёрдого сплава производительность ещё ниже), станок 4531 в принципе  позволяет обеспечить погрешность ±0,01 мм, поэтому рассматриваемое оборудование эффективно при производстве матриц вырубных штампов особо сложной конфигурации и шаблонов. Максимальные размеры вырезаемого контура составляют 100×60 мм.

Приводы подач станка

Лишь с недавнего времени начался выпуск электроискровых станков, а именно с совершенно новыми линейными двигателями. В данном выпуске были совершены и исправлены работы над регулированием скорости и ускорении, равномерным движением, реверсом, легкостью обслуживания и др.

Линейный двигатель в данном выпуске станков имеет двигатель, содержащий всего несколько элементов: электромагнитный статор и плоский ротор, которые содержат между собой только зазор из воздуха. Также имеется еще один немаловажный элемент и это оптическая измерительная линейка с высокой дискретностью (0.1 мкм). Без этого измерительного прибора система управления не сможет распознать координаты.

Но также ближе рассмотрим статор и ротор. Оба выполнены в виде плоских и легко снимаемых блоков. Но крепится статор к станине или колонне станка, а ротор – к рабочему органу.

В конструкции ротор совершенно прост. Он состоит из прямоугольных сильных постоянных магнитов. А магниты на тонкой плите из специальной высокопрочной керамики, коэффициент температурного расширения которой в два раза меньше чем у гранита.

Множество проблем линейного привода решились, так как стали использовать керамику одновременно с системой охлаждения. Соответственно «ушли» и проблемы с температурными факторами, с жесткостью конструкции, с наличием сильных магнитных полей и т.д.

Самодельные электроэрозионные станки

Самодельный электроэрозионный станок целесообразно собирать в том случае, если высокоточные работы с металлом выполняются часто и в относительно больших объемах. Это сложное в изготовлении оборудование, которое редко используется в быту. Он оправдан в металлообрабатывающих цехах и мастерских в качестве финишного инструмента обработки заготовок после фрезерного или токарного станков или изготовления мелких деталей сложной конфигурации.

Принцип работы электроэрозионного станка требует изготовления как электронной схемы, генерирующей импульсный ток высокой силы, так и сложной механической части, обеспечивающей движение электрода (проволочного или штучного). Основная сложность — сделать генератор, который может за короткое время накопить достаточный для пробоя заряд, выбросить его за доли секунды и за столь же короткий промежуток восстановить его. При недостаточной плотности тока электроэрозионная обработка невозможна даже на тонких деталях из мягких металлов.

Основные части самодельного проволочного электроэрозионного станка:

  • станина — чугун или сталь;
  • рабочий стол — прочный пластик или нержавейка;
  • ванна для диэлектрика, служащая рабочей зоной;
  • система подачи проволоки (две катушки, электродвигатель, привод, направляющие);
  • система управления электродом (для прошивочных);
  • система запуска и остановки;
  • блок прокачки диэлектрика — насос, фильтры, трубопроводы;
  • генератор;
  • система управления.

Последний пункт — один из самых сложных, необходимо синхронизировать подачу проволоки по скорости и направлению, частоту импульса и подачу диэлектрической жидкости. Следует учесть, что в процессе работы жидкость ионизируется, и свойства ее значительно изменяются.

В зависимости от схемы генератора станка, в нем используются весьма опасные токи величиной 1-30А при напряжении 220 В. Изоляция всех токопроводящих частей должна быть исключительно надежной. Как работает самодельный станок можно посмотреть на видео, или здесь.

После анализа различной информации из интернета, можно сделать вывод, что по-настоящему работоспособными являются только промышленные станки. Самоделки пригодны для гравировки, нанесения надписей, пиления тонких листов металла, с которым справиться может качественный профессиональный электролобзик.

Привод главного движения в станке

Линейный привод – это конструкция с бесконтактной передачей усилия, прямой привод без какой-либо кинематической цепи преобразования энергии в движение и вращательного движения в линейное, без люфтов, зоны нечувствительности и неравномерных подач. Все, что происходит при отработке каждого перемещения, это:

Командный импульс => Энергия взаимодействия магнитных полей => Линейное движение

В линейных приводах отсутствует многоступенчатое преобразование энергии в движение, что вызывает возникновение люфтов и неравномерных подач. Линейные приводы электроискрового станка способны корректировать зазор 500 раз в секунду с дискретностью подач 0,1 мкм. Выходит, оптимальный зазор практически в любой момент. И в итоге получаем оптимальные режимы, стабильно максимальный съем, высокую скорость обработки и качество поверхности.

Сфера применения

Электроэрозионные станки незаменимы при работе с материалами, которые плохо поддаются механической обработке – с твердыми и жаропрочными сплавами, нержавеющей сталью, титаном, вольфрамом. За счет силы тока могут проникать глубоко и вырезать контуры высокой сложности.

При этом электроэрозионные станки с ЧПУ обеспечивают точность обработки до малых долей микрон, что приобретает особую важность при работе с дорогостоящими сплавами, где недопустимы потери при резке. Станки востребованы в аэрокосмической, медицинской, авиастроительной, ювелирной отраслях промышленности

СИСТЕМА ПОДАЧИ И РЕГЕНЕРАЦИИ РАБОЧЕЙ ЖИДКОСТИ

Электроэрозионное разрушение осуществляется в рабочей среде, которая подаётся в МЭП. Поэтому каждый ЭЭП станок оснащен системой подачи рабочей жидкости (РЖ) в МЭП (рис. 6). Так как в процессе обработки происходит загрязнение РЖ то в компоновку станка входит и система регенерации РЖ. В ЭЭП станках обычно эти две системы объединены.

Рисунок 6 — Система подачи и регенерации РЖ

РЖ из емкости 1 подается гидронасосом 2. Регулирование подачи РЖ в зону обработки осуществляется манометром 3. Поток РЖ проходит через систему фильтрации4. Поток РЖ проходит гидрораспределитель 5. При превышении требуемого давления открывается вентиль 6 и часть РЖ сбрасывается в гидроприемник 7. РЖ, имеющая требуемую скорость и давление, которые контролируются манометром и ротаметром 8, направляется либо через кран 10 в рабочую ванну 13, либо через кран 9 через полый ЭИ 11. Обрабатываемая деталь 12 находится в рабочей ванне 13. Для регенерации РЖ сливается из рабочей ванны 13 через слив 14.

Электроэрозионные прошивные станки

  • нержавеющих сталей;
  • инструментальных сплавов;
  • титана;
  • закаленной стали.

Но работать могут со всеми видами токопроводящих материалов, когда требуется изготовление отверстий или углублений большой глубины с минимальным диаметром и точной геометрией сечения.

Одной из самых сложных операций прошивочного станка является изготовление резьбовых отверстий в тугоплавких материалах высокой прочности. В этом случае используются только станки с ЧПУ. Электрод из тонкой проволоки заводится внутрь отверстия и перемещается в продольном и поперечном направлении (по осям X,Y, с одновременным перемещением по оси Z). Получается отверстие со сложной конфигурацией стенки, резьбовой или иного профиля.

Электроконтактная обработка позволяет получать высокоточные оттиски штампов, пресс-форм или иных малогабаритных деталей. В этом случае электрод является миниатюрной копией требуемого изделия, изготовленной из меди или графита. В зависимости от полярности соединения на заготовке получаются четкие углубления или не менее четкие выступы. Такие электроэрозионные станки производятся как в стационарном, так и в настольном исполнении (например, G11 ARAMIS (Чехия)).

КОМПОНОВКА СТАНКА

ЭЭП станки имеют более сложную комплектацию, чем металлорежущие станки. Объясняется это тем, что для работы ЭЭ обработки необходимо дополнительное оборудование, связанное с технологическим процессом операции прошивки. В обязательную комплектацию входит: транзисторный генератор; тиристорный генератор; электрошкаф. К дополнительным агрегатам можно отнести теплообменники, которые иногда используются для регулирования температуры рабочей жидкости.

Компоновка ЭЭП станков – вертикальная. Это связано с необходимостью удаления продуктов эрозии из зоны обработки, и вертикальная компоновка является наиболее рациональным вариантом.

В последние десятилетия компоновка не изменилась, но дизайн ЭЭП станков значительно улучшился (рис. 4).

Рисунок 4 – Общий вид копировально-прошивочного станка

Направляющие станка

Направляющие служат для перемещения по станине подвижных узлов станка, обеспечивая правильность траектории движения заготовки или детали и для восприятия внешних сил. Во всех металлорежущих станках применяются направляющие: скольжения, качения, комбинированные, жидкостного трения, аэростатические.

Предъявляющие требования: первоначальная точность изготовления, долговечность, высокая жесткость, высокие демпфирующие свойства, малые силы трения, простота конструкции, возможность обеспечения, регулирования зазора-натяга.

В зависимости от расположения направляющие делятся также на горизонтальные, вертикальные, наклонные.

Типичные представители

В процессе подготовки реферата были разобраны несколько современных представителей станков электроэрозионного прошивного типа, оснащенных системой числового программного управления. Были представлены такие станки как, CNC-C90 и ZNC-50. Их основные технические характеристики и особенности приведены ниже.

Рис. 6 – Электроэрозионный прошивной CNC-C90

Параметры Ед. изм. CNC-C90
Размеры ванны рабочей жидкости мм 1240 x 700 x 435
Размеры стола мм 800 x 450
Перемещение X, Y, Z мм 500 x 400 x 350
Расстояние от главной оси до плоскости рабочего стола мм 650
Перемещение (пиноли) по оси Z мм
Макс. вес заготовки кг 1350
Макс. вес электрода мм 11 / 200
Макс. емкость диэлектрика литр 600
Макс. скорость обработки мм3/ мин 480
Мин. норма износа % < 0.1
Макс. показатель шероховатости обработанной поверхности μm < Ra 0.12
Макс. выходной ток А 60
Макс. входная мощность кВт 4.06
Габариты станка (Длина x Ширина x Высота) см 205 x 180 x 244
Итоговый вес станка кг 2,635

ОСОБЕННОСТИ прошивного станка:

  • Программа со вспомогательными иконками для более легкой работы
  • Встроенная память, жесткий диск и поддержка интернет или программа RS232 передачи данных
  • Оснащен высокоточным линейным энкодером Heidenhain (1мкм)
  • Расширенный линейный ход для круговой обработки и перемещения
  • Прецизионная ШВП для точной передачи
  • Двойная система фильтрации отделяет углеродный остаток более эффективно
  • Многоточечная противопожарная система обнаружения
  • Память до 1000 установок параметров обработки, 20 искровых данных в установке
  • Векторные и угловые функции EDM
  • Возможность редактирования программ
  • GM код и диалоговая функция редактирования
  • 48 режимов обработки
  • Авто память на 60 установок рабочих координат
  • Автоматическая запись времени обработки и расхода материала
  • Доступное оборудование — АТС (4 инструмента / 6 инструментов/ 20 инструментов)

Рис. 7 – Электроэрозионный прошивной ZNC-50

Параметры Ед. изм. ZNC-50
Размеры ванны рабочей жидкости мм 940 x 530 x 350
Размеры стола мм 630 x 360
Перемещение X, Y, Z мм 350 x 250 x 200
Расстояние от главной оси до плоскости рабочего стола мм 520
Перемещение (пиноли) по оси Z мм 200
Макс. вес заготовки кг 500
Макс. вес электрода мм 50
Макс. емкость диэлектрика литр 300
Макс. скорость обработки мм3/ мин 420
Мин. норма износа % < 0.1
Макс. показатель шероховатости обработанной поверхности μm < Ra 0.12
Макс. выходной ток А 50
Макс. входная мощность кВт 3.3
Габариты станка (Длина x Ширина x Высота) см 140 x 138 x 220
Итоговый вес станка кг 1,375
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Механика металла
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: